BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
     
 
Mehmet Akgul, Ph.D. 2014

Electrical Engineering
Advisor: Prof. Nguyen
(510) 684-2166
Research Interests: Design of chip-scale integrated micromechanical circuits that combine various micromechanical transducers and sensors to perform complex functions, such as electrical filters, oscillators, and sensor arrays, in a design strategy analogous to VLSI transistor circuits. Developing behavioral models and equivalent circuits for micromechanical components to be used as unit cells, e.g., individual resonators, accelerometers, to be hierarchically used in larger mechanical circuits that outperform their conventional purely transistor counterparts.
Job Interests: Academic, Industry R&D, post-doc

BIOGRAPHY
Mehmet Akgul (BS'07) received his B.S. degree in electrical and electronics engineering from Middle East Technical University, Ankara, Turkey as 2nd of his class in 2007. He is currently working towards his PhD degree at University of California, Berkeley with Prof. Clark Nguyen.
His research focuses on design, microfabrication, and testing of large scale micromechanical circuits using capacitively transduced resonators as the building block, with primary focus on RF-channel select filter banks capable of selecting individual narrow-band channels directly at RF frequencies for true cognitive radio applications. His work also extends into improving capacitive resonator performance by using high-Q resonator materials, such as polydiamond; and strengthening electromechanical coupling via capacitive gap scaling by using ALD deposited high-k dielectrics.

A Micromechanical RF Channelizer [BPN434]
Vibrating mechanical tank components, such as crystal and SAW resonators, are widely used for frequency selection in communication systems because of their high Q and exceptional stability. However, being off-chip components, these devices pose an important bottleneck against the ultimate miniaturization and performance of wireless transceivers. This project aims to explore the use of capacitively transduced micromechanical circuits to realize micromechanical mixer-filters with reconfigurable attributes. With their substantial size, cost and performance advantages, these devices can be used to realize a bank of tunable/switchable micromechanical filters for multi-band RF channel selection. By replacing all off-chip components with micromachined passive elements, micromechanical mixer-filters offer an alternative set of strategies for transceiver miniaturization and improvement. In the long term, this overall project aims to demonstrate an RF channelizer utilizing micromechanical elements in its signal path, exclusively, that presents one of the keys to eventually realizing a cognitive radio.


Current Active Projects:
BPN434
 

     Last Updated: Wed 2014-Jan-15 19:24:25

back to Researchers



 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: April 23, 2014, 7:24 am