BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
Alumni
     
 
Daniel Cohen, Ph.D. 2013

Advisor: Prof. M.M. Maharbiz/D. Liepmann

BIOGRAPHY
Daniel is jointly enrolled at Berkeley and UCSF as a PhD student in the Department of Bioengineering with a bachelors degree in Mechanical Engineering from Princeton (2008). His research has bounced across medical device design, lizard chasing, dinosaur biomechanics, and bioelectric control of tissues.

Lab and CV: maharbizgroup.wordpress.com/members/‎
LinkedIn: www.linkedin.com/pub/daniel-cohen/22/37a/b5b/

Manipulating Cellular Behavior and Wound Healing via Local Electric Field Stimulation [BPN690]
One of the first things that happens when you cut your skin is that a DC electric field arises at the wound site. This field, first
discovered in the mid-1800s, is called 'the wound field', and has been shown to exist in a variety of forms in a variety of wounds.
The salient point of the wound field is that there is reason to believe that we may be able to manipulate it to improve how our
injuries heal in certain cases. In particular, we are considering assisting healing of injuries to skin, intestine, and bone using a
device that can encompass the wound site, monitor particular physiological metrics (pH, endogenous electric signals, etc.), and
electrically stimulate the wound to improve the quality and rate of healing. In order to better define how this device will look, we
are currently conducting in vitro testing with our own microfabricated stimulation devices and epithelial cells that are involved in
natural wound healing. While it has long been known that such cells will orient and move in the presence of DC electric fields, we
are not aware of prior efforts to explore the degree of control that can be achieved by dynamically manipulating local electrical
fields. For instance, if we take a cluster of cells and apply a localized field over just part of that cluster, can we locally sculpt the
developing tissue? An interesting detail of this approach is that many of the analytical techniques we will be using are derived
directly from those used to study emergent behavior in herding sheep, flocking birds, schooling fish, and large crowds of humans.
Our goal is to use the minimum control inputs necessary to effect system level change in a tissue. Depending on how successful
this is, these approaches could provide new ways of interacting not just with injuries but also with laboratory tissue engineering
where we try to recapitulate the developmental environment to regenerate damaged organs or grow new organs.


 

     Last Updated: Tue 2014-Mar-25 17:47:07

back to Researchers



 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: October 25, 2014, 5:41 am