BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
Affiliated Faculty
     
 
Dr. Timothy Hanson

UCSF Physiology
Advisor: Prof. M.M. Maharbiz/P.N. Sabes
(415) 502-7363
Research Interests: neural interfaces, neural networks, machine learning, automatic programming, materials science, neurobiology, nanofabrication, robotics & automation.
Job Interests: Academic or Industry -- so long as the project is interesting!

BIOGRAPHY
Rough trajectory: Cornell ECE, BS -> SUNY Downstate research Engineer -> Duke Neurobiology, Ph.D. -> UCSF research engineer.

I grew up in NY, spent nearly 8 years in North Carolina, and now call California home!

Flexible Electrodes and Insertion Machine for Stable, Minimally-Invasive Neural Recording [BPN731]
Current approaches to interfacing with the nervous system mainly rely on stiff electrode materials, which work remarkably well, but suffer degradation from chronic immune response due to mechanical impedance mismatch and blood-brain barrier disruption. This current technology also poses limits on recording depth, spacing, and location. In this project we aim to ameliorate these issues by developing a system of very fine and flexible electrodes for recording from nervous tissue, a robotic system for manipulating and implanting these electrodes, and a means for integrating electrodes with neural processing chips. We have fabricated three versions of the electrodes, and have demonstrated their manual and automated insertion into an agarose brain tissue proxy using a notched tungsten needle. We have also fabricated and tested in agarose three revisions of the inserter robot. The most recent inserter robot design uses a replaceable electrode cartridge to which electrodes are mounted; these electrodes are made on a 5um thick polyimide substrate with a parylene peel-away backing. The parylene backing holds the fine wires and keeps them from tangling until they are inserted, and provides a more robust means of handling and mounting the structures. We hope to test the full system in rats within 2 months. Simultaneously we are working with BSAC members Will Biederman, Dan Yeager, and other members of the Rabaey group to make electrodes compatible with the neural recording and stimulation chip they have fabricated.


Current Active Projects:
BPN731
 

     Last Updated: Wed 2014-Feb-19 14:04:22

back to Researchers



 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: July 30, 2014, 8:24 pm