BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
Contact Us
     
 
Eric Sweet, Ph.D. 2020

Mechanical Engineering
Advisor: Prof. Lin

BIOGRAPHY

3D Printed Biomedical and Diagnostic Systems [BPN846]
Every year, more than twenty thousand people in the United States die from antibiotic-resistant bacterial infections. Despite increasing rates of antibiotic resistance, little clinical research is being performed into the discovery of new drugs; instead, a commonly used method to combat antibiotic resistance is combination therapy, where various antibiotics are combined into a “drug cocktail” to be simultaneously administered to the patient. However, biomedical research into the interactions of three or more antibiotics is fairly limited, a result of the critical functional-limitation of standard BioMEMS analytical devices (e.g., two-dimensional PDMS microfluidic chips fabricated via soft lithography) that such monolithic structures can only produce gradients of two fluidic inputs at a time. Furthermore, the biomedical community lacks a simple and accessible method of determining the minimum inhibitory concentration (MIC) of a single antibiotic where the gold standard is still manual labor-intensive pipetting, dilutions, and agar plates. For this project, we present a novel micro-scale 3D printed microfluidic concentration gradient generator (CGG) that produces a symmetric concentration gradient between three fluidic inputs, which we used to determine the interactions of various combinations of three commonly clinically administered antibiotics (Nitrofurantoin, Tetracycline and Trimethoprim), as well as the MIC value for each individual antibiotic, on ampicillin- resistant E. Coli. Bacteria. Our singular device could be used in a clinical setting, when attempting to treat a known or unknown antibiotic-resistant strain, to decrease the analysis time and required volume of antibiotics to perform a determination of the interactions of multiple antibiotics simultaneously, as well as to analyze the MIC value of each antibiotic, which could set a significant clinical precedent resulting in faster and more effective treatment of new infections and potentially a greater number of patient lives saved. Furthermore, our three-flow CGG could increase the efficacy and speed of experiments in other areas in biomedical research where concentration gradients of reagents are relevant, such as stem cell research.


Current Active Projects:
BPN846
BPN774
 

     Last Updated: Sun 2017-Feb-12 17:30:50

back to Researchers



 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: March 30, 2017, 5:39 am