Clinical Problem: Curing early stage cancer depends eliminating all tumor cells, but there is no way to detect microscopic disease in the body.

Technical Challenges
- Illumination
 - Blood: Absorption
 - Blood: Non-Uniform Coating
 - Antibody Non-Specific Binding
- Background
 - Remove Reflected Light
 - Blood: Autofluorescence

Proposed Solutions
- Optical filters
- CMOS Imager
- GHz resolution for Time Gated Imaging

Results
- Antibodies “per cell” [100 μm²]
- Signal vs Number of Antibodies

Next Steps
- Integration of setup into microscope with fiber optic extension with improved optical filter.
- Fiber optic illumination of sample with time-gated imaging.
- Integration of imaging chip with optical fiber illumination.
- Imaging of in-vitro cell samples with mm resolution.

In-Vivo Temperature Measurement: Radiation therapy for cancer can benefit from well controlled local heating of the tissue, but no reliable method exists to monitor temperature in-vivo over a 2 month period. Our goal is to develop an implantable low-power wireless temperature sensor.

Magnetic Label Flow Cytometer
- **Goal:** Reduce the complexity and cost of flow cytometry to bring it to the point of care.
- **Concept:** Label cells with magnetic nanoparticles, flow them over a magnetic sensor, and count them.
- **Advantages of magnetic labels:**
 - Greatly simplified sample prep
 - No background
 - Label response not affected by storage, biochemical interactions
 - Can analyze whole blood
- **What about multiple colors?**
 - Magnetic actuation → can sort cells without complex fluids
 - Much lower cost → no lasers, photomultiplier tubes, or filters
- **Idea:** Use Neel relaxation in superparamagnetic nanoparticles
 - Relaxation time constant is a strong function of particle size and material
 - Can use this effect to distinguish different types of particles by measuring phase shift
 - Multi-color flow cytometry with magnetic labels!