BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
     
 

BPN370: MEMS Metal Gimbal: Design and FEM

Project ID BPN370
Website
Start Date Wed 2007-Jan-24 21:16:56
Last Updated Tue 2007-Sep-04 10:13:08
Abstract The long range goal of this research is to analyze the a UC Berkeley designed MircoGimbal with a finite element method (FEM) simulator, ANSYS, to achieve design optimization. A fundamental design goal of the MicroGimbal is to maximize the rotation angle (current target is +/- 30 degrees) while minimizing the stress. TheorticallyTheoretically, it can be obtained by having cross section with low moment of inertia and long length . However, low moment of inertia and long length reduce the beams ability to support the payload in z-direction. Due to these competing phenomena, optimization of the UC Berkeley MicroGimbal elements is essential .
Status Continuing
Funding Source Federal
IAB Research Area Physical Sensors & Devices
Researcher(s) Ya-Mei Chen
Advisor(s) Albert P. Pisano
Detailed Information
Secure Access

Private Abstract
Research Report
Poster
Summary Slide
Active Feedback (or Request for Response)

 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: July 28, 2014, 1:33 pm