BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
Muller
     
 Lee
 Lin
 Wu
 

BPN645: Highly-Parallel Magnetically-Actuated Microvalves

Project ID BPN645
Website
Start Date Wed 2011-Aug-17 15:10:04
Last Updated Thu 2013-Aug-15 10:21:14
Abstract This project aims to develop highly-parallel, magnetically-actuated microvalves using CMOS- compatible technology. Current state-of-the-art microvalve technologies require extensive supporting experimental apparatus and do not yield true lab-on-a-chip functionality. Here, the focus is placed on true chip-scale valve arrays based on low-power, on-chip magnetic coils which are used to actuate 100 micron diameter magnetic spheres that serve as the valve sealing surface. Prior studies of magnetic bead manipulation by planar coils, spin-valve arrays, and rotating magnetic fields have focused on the transport of small 1~50 micron diameter microbeads. In this work, the paramagnetic beads are magnetized using an external permanent magnet, allowing milliampere-level currents to generate large bipolar actuation force for valve opening/closure. The magnetically-actuated valves are self-assembled over each coil in a large chip-scale array by dispersing beads onto the chip and magnetically trapping a bead on top of each valve seat. Successful development of this technology will have various applications in parallel chemical synthesis and bioanalysis devices.
Status Continuing
Funding Source BSAC Member Fees
IAB Research Area Microfluidics
Researcher(s) Pauline J. Chang
Advisor(s) David A. Horsley
Detailed Information
Secure Access

Private Abstract
Research Report
Poster
Summary Slide PDF | VIDEO
Can’t view video click here
Active Feedback (or Request for Response)

 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: December 19, 2014, 2:45 pm