User: Guest |  Site Map |  My BSAC Profile
Table of all Projects

BPN731: Flexible Electrodes and Insertion Machine for Stable, Minimally-Invasive Neural Recording

Project ID BPN731
Start Date Tue 2013-Aug-20 10:03:03
Last Updated Mon 2015-Feb-02 18:01:46
Abstract Current approaches to interfacing with the nervous system mainly rely on stiff electrode materials, which work remarkably well, but suffer degradation from chronic immune response due to mechanical impedance mismatch and blood-brain barrier disruption. This current technology also poses limits on recording depth, spacing, and location. In this project we aim to ameliorate these issues by developing a system of very fine and flexible electrodes for recording from nervous tissue, a robotic system for manipulating and implanting these electrodes, and a means for integrating electrodes with neural processing chips. We have fabricated five versions of the electrodes, and have demonstrated their manual and automated insertion into an agarose tissue proxy and ex-vivo brain using a etched tungsten needle. We have also fabricated and tested in agarose three revisions of the inserter robot. The most recent inserter robot design uses a replaceable electrode cartridge to which electrodes are mounted; these electrodes are made on a 5um thick polyimide substrate with a parylene peel-away backing. The parylene backing holds the fine wires and keeps them from tangling until they are inserted, and provides a more robust means of handling and mounting the structures. Simultaneously, we have been developing a machine for laser and resistance micro-welding the insertion needle, and have completed several promising test needles. We hope to test the full system in rats within a month.
Status Continuing
Funding Source DARPA
IAB Research Area Physical Sensors & Devices
Researcher(s) Timothy L. Hanson
Advisor(s) Michel M. Maharbiz, Philip N. Sabes
Detailed Information
Secure Access

Private Abstract
Research Report
Summary Slide PDF | VIDEO
Active Feedback (or Request for Response)


  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us
  User logged in as: Guest
  User Idle since: August 2, 2015, 3:20 am