BERKELEY SENSOR & ACTUATOR CENTER
UC BERKELEY UC DAVIS
User: Guest |  Site Map |  My BSAC Profile
HOME  PROJECTS  THRUSTS  PUBLICATIONS  ABOUT BSAC  DIRECTORY  ALUMNI  FOR BSAC RESEARCHERS  EVENTS CALENDAR  SECURE LOGIN
Table of all Projects
     
 

BPN873: Small Autonomous Robot Actuator (SARA)

Project ID BPN873
Website
Start Date Mon 2017-Aug-14 18:21:14
Last Updated Fri 2020-Sep-04 07:59:34
Abstract The Small Autonomous Robot Actuator (SARA) aims to integrate the Single Chip micro Mote (SCuM), a small millimeter scale solar panel and high voltage buffer (Zappy2), and a MEMS 40-100V inchworm motor that has been demonstrated to push a 7um diameter carbon filament through an adjustable width channel at speeds of 10um/s to 200um/s. SARA has been demonstrated to operate the inchworm motor at 1 Hz with 100V square waves under 200mW/cm2 on separate PCBs and transmit 802.15.4 packets with temperature estimates between 35.5-40 C with a 0.28 std error from SCuM to an OpenMote while on a quarter-scale PCB. The next steps are wirelessly controlling the MEMS motors with 100V signals from Zappy2 while under 200mW/cm2 -and on the quarter-scale PCB, precise control through contact sensor feedback and expanding the range of diameters possible to manipulate. We have designed MEMS motors capable of manipulating variable gauge filaments with the expressed intention of developing a microrobot able to assemble variable gauge filaments and wires from multiple non-ideal configurations, including bi-directional assembly and maneuvering. Additionally, we have designed MEMS motors with impact resistance in mind and that can withstand backlash that is present in many dynamic configurations. Future applications include an array of individually addressable neural electrode implanters, a microrobotic spider, a wound or fabric stitching microrobot, and plug-and-play linear servos for paper robots.
Status Continuing
Funding Source Member Fees
IAB Research Area Physical Sensors & Devices
Researcher(s) Alex Moreno, Austin Patel, Alexander Alvara, Daniel Teal, Andrew Fearing
Advisor(s) Kristofer S.J. Pister
Detailed Information
Secure Access

Private Abstract
Research Report
Poster
Summary Slide PDF | VIDEO
Active Feedback (or Request for Response)

 

  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us

   webmaster@bsac.eecs.berkeley.edu
  User logged in as: Guest
  User Idle since: October 3, 2022, 2:56 am