Injection molded microfluidic chips featuring integrated interconnects†

Dieudonne A. Mair, a Emil Geiger, b Albert P. Pisano, b Jean M. J. Fréchetacd and Frantisek Svecad

Received 25th April 2006, Accepted 13th July 2006
First published as an Advance Article on the web 31st July 2006
DOI: 10.1039/b605911b

An injection molding process for the fabrication of disposable plastic microfluidic chips with a cycle time of 2 min has been designed, developed, and implemented. Of the sixteen commercially available grades of cyclo-olefin copolymer (COC) that were screened for autofluorescence and transparency to ultraviolet (UV) light, Topas 8007 × 10 was identified as the most suitable for production. A robust solid metal mold insert defining the microfluidic channels was rapidly microfabricated using a process that significantly reduces the time required for electroplating. No wear of the insert was observed even after over 1000 cycles. The chips were bonded by thermal fusion using different bonding conditions. Each condition was tested and its suitability evaluated by burst pressure measurements. The COC microfluidic chips feature novel, integrated, reversible, standardized, ready-to-use interconnects that enable operation at pressures up to 15.6 MPa, the highest value reported to date. The suitability of these UV transparent, high pressure-resistant, disposable devices was demonstrated by in situ preparation of a high surface area porous polymer monolith within the channels.

Introduction

Miniaturizing devices for biomedical analysis will lead to portable and self-contained point-of-care diagnostic tools. In addition to portability, efforts to scale-down chemical analysis with microfluidic devices are driven by the significant reduction in the volume of reagents and samples required for analysis as well as the acceleration of the process due to shorter distances the sample has to traverse. The microfluidic chips can be fabricated from a variety of materials including silicon, fused silica, glass, quartz, and plastics.1 The chemistry of these substrates is well understood and most also have the optical properties that are required for detection by laser-induced fluorescence (LIF). The first micro total analytical system (μTAS) to be introduced2 was made from inorganic materials because the micromachining processes developed for the fabrication of integrated circuits were readily adaptable. However, fabrication involved a multi-step process consisting of cleaning, mask deposition, lithography, and etching, which is both slow and expensive.3 Therefore, a transition from the conventional substrates to plastics4 would enable the cost-effective and high-volume production of disposable microfluidic devices. Today, the most common technologies for the preparation of microfluidic systems from plastics involve laser ablation,5 hot embossing,6 soft lithography,7 or injection molding.8 A wide variety of polymers such as polyimide, poly(methyl methacrylate), polycarbonate, poly(dimethylsiloxane), and polyolefins have already been used9 with the choice of the specific material determined by its physical and chemical properties as well as the technology used for fabrication.

An obstacle that currently impedes broader use of microfluidics is the lack of standard interconnects for interfacing the macroscale environment with the microfluidic channels within the chip.10–12 The issue of convenience is especially important in high-throughput applications where the time constraints involved with the manipulation of several interconnects can be large enough to offset the economic advantages of migrating to a microfluidic platform.13 The failure of an individual interconnect can be detrimental to device operation and repair is often not an option. Although reports on the fabrication and use of microfluidic devices for analysis frequently omit their description, interconnects, are now receiving considerable attention and have been recently reviewed.13 Typically, capillaries, tubes, and pipette tips are glued to the fluid access holes. Unfortunately, this manual approach depends on the skill of the operator and is not always reproducible.10,14 Moreover, the use of glue may lead to chemical contamination.15 Therefore, multistep interconnect fabrication techniques that bar the glue from contacting working fluids10,16–19 as well as glue-free methods20,21 have been developed.

Although these approaches address most of the problems associated with glue-based interconnects, they all lack an important feature: reversibility.14 The need for reversible interconnects has led many to develop customized formats.22–25 Lately, a standardized reversible PEEK fitting that is glued onto the chip face has been commercialized.26–30 However, these fittings are costly and glue is again required for their attachment. As an alternative, others have developed docking stations that house the chip and that function as a socket through which all fluidic and electrical connections are made.14,31
From the substrates by drying at 120 °C for 15 min and organic contaminants were removed via an oxygen plasma (300 W, 48 Pa O₂, 15 min). A negative-tone photoresist (SU-8 2075, MicroChem Corporation, Newton, MA) was spin-coated on the substrate using the static dispense method. After allowing the puddle of resist (4 mL) to settle for 20 s, the resist was spread (500 rpm, 20 s, 1 krpm s⁻¹) to achieve a continuous resist coating over the substrate prior to the final spin step (1500 rpm, 20 s, 1 krpm s⁻¹) which yields a final film thickness of 150 μm. Following the pre-exposure bake (70 °C, 5 min 95 °C, 20 min) the substrate was allowed to cool for 10 min by natural convection. Flood exposure at 365 nm with a dose of 254 mJ cm⁻² (SUSS MicroTec Inc., Waterbury Center, VT) was followed by a post-exposure bake at 70 °C for 1 min and at 95 °C for 10 min followed by 10 min cooling. Development was carried out at room temperature using SU-8 developer for 10 min. Finally, the substrates were thoroughly rinsed with 2-propanol and water, dried and plasma cleaned as above. Contact hot plates were used for all heating steps in order to ensure reproducibility. The 2-stage heating and 10 min cooling steps are important for minimizing resist cracking and delamination from the substrate.

Wood’s strike bath. The substrate was loaded in a custom made jig that isolates the non-plated regions from the bath. The jig-wafer assembly was then placed in a stirred Wood’s strike (240 g L⁻¹ NiCl₂·6H₂O and 160 g L⁻¹ conc. HCl, 40 °C). A depolarized, soluble Ni anode (Alan Baker Co., South San Francisco, CA) was loaded in a canvas bag to prevent large particles of nickel from entering the solution. A constant current power supply (Keithley, Instruments Inc., Cleveland, OH) was used to maintain a current density of 100 A m⁻² for 50 min, yielding a 5 μm layer of active nickel. After 50 min the power supply was turned off and the jig was carefully removed to ensure that a puddle of bath solution remained over the active area. Liquid must be maintained over the active area because the presence of nickel oxide is suspected to be responsible for poor adhesion between substrate and electro-deposited film. After displacing this puddle from the wafer surface with deionized water the jig-wafer assembly was finally placed in the electroplating bath.

Electroplating. A layer of 100 μm Ni was electrochemically deposited at a current density of 100 A m⁻² in a ready-to-use nickel sulfamate electroplating bath (Technic, Inc., Anaheim, CA). The heating element enclosed in a quartz sheath (Cole Parmer, Vernon Hills, IL) was controlled with a fuzzy PID controller to maintain the bath temperature at 40 °C. Simultaneous agitation and filtering was achieved using a pump fitted with a filter at the inlet (Flo King, Longwood, FL). The pump effluent was directed towards the center of the active plating area. The thickness of the electroplated layer was found to closely follow that calculated using Faraday’s Law.

\[
x = \frac{1}{\rho} \times \frac{m}{q} \times t
\]

where \(x\) is the film height, \(\rho\) is the density of nickel, \(I\) is the plating current, \(A\) is the surface area plated, and \(m\) and \(q\) are the mass and charge of one mole of nickel, respectively.
Resist stripping and dicing. After electroplating the photoresist was stripped for 4 h at 80 °C in a bath of SU-8 Remover (MicroChem). The substrate was then rinsed with isopropanol and water and then coated with a 8 μm layer of positive tone photoresist to protect the structures from being damaged by small particles generated during the dicing. The dicing tool (Disco Hi-Tec America Inc., Santa Clara, CA) was used to make aligned cuts yielding a mold insert with channel termination points or pads precisely aligned to the access holes on the mold base of the injection molding tool.

Injection molding

Chips were fabricated from COC pellets (Topas 8007 × 10, Ticona, Florence, KY) using a Roboshot 30z-1 injection molding machine (FANUC America Corporation, Chicago, IL). A standard mold base (D-M-E Co., Madison Heights, MI) was machined in-house and polished (Elmers Mold Polishing and Repair, San Marcos, CA) to a mirror finish for the production of optically clear parts. The mold base was maintained at 80 °C during production using thin film resistive heaters (Therm-X, Hayward, CA) that were customized to accommodate the ejector pins and mounted behind the A- and B-side mold plates. Insulating sheets (D-M-E, Madison Heights, MI) were positioned behind the mold plates in order to limit the thermal mass. Injection speed, packing, and other molding parameters were optimized for part quality and reduction of cycle time.

Bonding

A hydraulic press (Carver, Inc., Wabash, IN) fitted with heated plates and an analog load gauge was used to thermally bond the chips. Customized Pyrex bonding plates were made to accommodate the protruding ports of the chip during the bonding process.

Burst pressure measurement

The burst pressure was measured by connecting the plastic device to a microLC pump (Micro-Tech Scientific, Vista, CA) fitted with a pressure transducer with an error accuracy of 0.5% over the range of 0–69 MPa. The voltage signal from the pressure transducer was transmitted through a voltage divider, recorded using ChromPerfect software, and converted to pressure using a calibration curve provided by the manufacturer. A computer was used to set the water flow rate at 1 μL min⁻¹ and to record the signal from the pressure transducer. After pumping water through the device for 1 to 2 min, a plug fitting (Upchurch Scientific, Oak Harbor, WA) that blocked flow was threaded into the remaining I/O port of a single-channel device.

Preparation of a monolith within the channel of the plastic chip

Methyl methacrylate (99%, MMA), butyl methacrylate (99% BuMA), ethylene dimethacrylate (99%, EDMA), ethylene diacrylate (99%, EDA), 2,2-dimethoxy-2-phenylacetophenone (99%, DMPAP), benzophenone (99.9% BP), cyclohexanol, and 1-dodecanol were purchased from Aldrich (Milwaukee, WI), MMA, BuMA, and EDMA were vacuum distilled and all other chemicals were used as received.

The channel surface was first grafted with an adhesion layer of polymer as follows: a mixture of 0.485 g MMA, 0.485 g EDA, and 0.030 g BP was purged with nitrogen for 10 min and then pumped into the bonded chip using a gas tight 100 μL syringe (Hamilton Company, Reno, NV). The chip was then irradiated with the DUV light source (Optical Associates Inc., San Jose, CA) for 4 min, and subsequently flushed with several channel volumes of methanol.

The monolith was then prepared within the chip using a modification of the procedure developed previously in our group. The surface modified channel was filled with a polymerization mixture comprised of 0.400 g EDMA, 0.600 g BuMA, 1.500 g 1-decanol, and 0.01 g DMPAP that had been purged with nitrogen for 10 min. Irradiation for 10 min and subsequent washing with methanol afford monolith with a pore size of 2.2 μm as measured using mercury intrusion porosimetry.

Results and discussion

Optical properties of COC

COC has become an increasingly popular choice for chip production because of its uniquely high transmission in the UV and DUV and low autofluorescence.38–51 UV transparency is critical to the successful preparation of a porous polymer monolith directly within the channel of the chip via photo-initiated polymerization. Because wide variations in optical properties between samples from different vendors and even among samples from the same vendor have been reported,52 we measured both the UV transparency and autofluorescence of all commercial grades of COC currently available.

The photoinitated reactions leading to surface modification of the channel wall for covalent attachment of the monolith requires DUV light with a wavelength near 250 nm while the subsequent preparation of the monolith is carried out using near UV irradiation (λ = 300–400 nm). Therefore, we measured the UV and DUV transmission of several samples and then used eqn (1) to predict the transparency for a sample 1 mm in thickness. This normalization facilitated the comparison of samples of different thicknesses. Fig. 1 shows the UV transparency spectra obtained for all 16 grades of COC tested. The major source of variation among grades is the presence of various types and levels of small molecule additives such as flame-retardants, smoke suppressants, lubricants, antioxidants, and UV absorbers that are often benzophenone derivatives designed to mitigate UV-induced material damage. These additives are routinely added to commercial polymers to improve their processability and extend lifetimes. Given its relatively low UV transparency it is interesting that grade 1020R from Zeon is one of the more popular grades used for the preparation of chips containing monolith.39,43,44,53

The high level of autofluorescence observed for most polymers is a barrier to the universal transition from glass to plastic microfluidic devices because it significantly reduces the sensitivity of detection by LIF.39,44,54,55 While low autofluorescence of COC has been previously reported,32,52 the observed variation in UV transparency among various grades
motivated us to measure the autofluorescence of each available COC grade. Because we plan to use fluorescamine ($\lambda_{abs} = 405$ nm, $\lambda_{emis} = 500$ nm) to label proteins for detection by LIF in our studies, substrates were excited at 405 nm and the intensity of the emission was collected from 420–700 nm. To facilitate comparisons with glass, the autofluorescence found for individual polymers is divided by that observed for glass. Fig. 1 shows that the autofluorescence of selected COC materials varies considerably. Interestingly, all products of Zeon Chemicals have a low autofluorescence as indicated by fluorescence ratios ranging from 5 to 25 only. In contrast, some COC grades from Ticona show a fluorescence that exceeds that of glass by a factor of as much as 250 while others do not exceed 30. Again, the additives are the most probable source of variation in autofluorescence. Unfortunately, the presence of these unknown additives precludes a simple linearization of the fluorescence intensity to account for the 15% difference in thickness between the samples provided by the two vendors. However, this difference in thickness is not expected to be large enough to entirely account for the 10-fold difference in fluorescence intensity.

Based on their low autofluorescence and high DUV transmission Topas 8007 from Ticona and Zeonex 480 from Zeon chemicals were identified as strong candidates for chip production. Despite its slightly larger autofluorescence, the Ticona polymer was chosen here for chip production for its superior transmission in the DUV region and lower T_g (80 °C versus 138 °C). The high transmission of Topas 8007 × 10 in the DUV region facilitates surface modification necessary for anchoring monolith to the channel walls and the lower T_g reduces the heat requirement for injection molding and chip bonding. Grade 480 from Zeon is more suitable for fabricating devices with integrated heaters or for performing on-chip reactions such as polymerase chain reactions (PCR) for DNA amplification that require elevated temperatures.

Another material property that is important for the in situ preparation of monoliths is oxygen permeability. The typical permeability of COC for oxygen is only 0.4 Barrers, which is much less that the value observed for other materials popular for the preparation of microfluidic chips. For example, permeability of PDMS is high reaching to about 10^3 Barrers. This significant difference facilitates the preparation of a monolith within the COC since our polymerization reactions that lead to both surface modification of the channel wall and in situ formation of monoliths are usually photoinitiated and proceed via a free radical mechanism. These reactions are largely inhibited in the presence of oxygen. This fact makes the oxygen permeability an important metric for the selection of the chip substrates.

Mold insert fabrication

The use of replaceable mold inserts that are mounted directly on the mold base facilitates the rapid prototyping capability of
injection molding. Since the inserts contain the channel layout that is transferred to the plastic, this technique allows nearly instantaneous change in the channel layout of the device through a simple replacement of the mold insert. However, the direct mounting of a microfabricated part in the mold cavity requires a very robust and mechanically strong insert that does not wear or deform after many cycles of the high pressure (>100 MPa), clamping force (30 tons), or temperature (250 °C) typical of an injection molding cycle. For this reason LIGA (a German acronym for lithography, electroforming and molding) and DEEMO (dry etch, electroplate, and molding) processes have been developed to produce tough metallic mold inserts. While these processes are widely used, they both suffer from problems such as production of highly stressed parts and long electroplating times. Fabricating an electroform with low internal stress is a very challenging step and several studies have focused on the development of techniques to minimize film stress during electrodeposition. Currently, the electroplating step is the bottleneck in the rapid-prototyping process that severely extends the turnaround time between design of channel layout and final device. In order to truly realize the vision of rapid prototyping we developed a mold insert fabrication process that eliminates the need for overplating, post plating planarization, and electroform film stress. The process steps for the DEEMO process are illustrated schematically in Fig. 3A. Our simplified LIGA process is illustrated in Fig. 3B and begins with spin coating a thick negative-tone resist onto a solid nickel wafer. After lithography, the substrate is electroplated to a thickness that corresponds to the channel height. The resist is then stripped, affording a robust nickel mold. By starting with a solid metal wafer that functions as the base we eliminate the need for overplating and dramatically reduce the thickness of the electroplated film. The electroplating process requires only 8 h to obtain a film 100 μm thick at a current density of 100 A m⁻².

Feature uniformity is very important in order to obtain well-defined channels in the chip. To investigate the consistency of the cross-sectional geometry, a mold insert was diced along the channel in increments of 5 mm. An SEM image of a typical channel cross section is illustrated in Fig. 4B. The height and base lengths were recorded for each instance and plotted in Fig. 4A. Clearly, the trapezoidal cross section is maintained and the dimensions vary randomly within a tolerable amount along the entire length of the channel print. The standard deviation of H, W_1, and W_2 are 2, 6, and 4 μm, respectively. This represents another demonstration of the reliability of our process.

Interconnects

Before examining the merits and shortcomings of the basic types of interconnects that have been developed to date it is important to note the numerous requirements for an ideal interconnect: (i) small footprint to allow a high density of fluidic I/O ports, (ii) minimal dead volume, (iii) ease of use, (iv) standard geometry to facilitate interfacing with commercially

Fig. 3 Fabrication of mold insert by DEEMO (A) and our simplified process (B).

Fig. 4 Cross sectional dimensions of mold insert along the channel (A) and SEM image of typical cross section of mold insert (B).
available devices, (v) reversibility, (vi) reliability, (vii) lack of contamination, and finally, (viii) ease of fabrication.

Microfluidic chips are routinely subjected to high back pressures when the channels are filled with beads. While packed beds are commonplace in large-scale industrial processes, the large surface area they impart has not been widely exploited in microfluidic applications mostly because the chips cannot sustain the high back-pressures required for routine operation. At high pressures, microfluidic devices often fail at one of two junctions: either at the point of attachment of the interconnect, or at the interface between the two bonded parts. Since the bond at the fluidic interconnect is typically weaker than the chip bond we sought to simultaneously eliminate a junction subject to failure and any extra fabrication steps for interconnects, by carefully designing a mold base to produce a part with female ports that are fully integrated into the device. As designed and illustrated in Fig. 5, the upper part of our chip features a hollow boss with ANSI standard internal 6–32 threads located at each fluid entry point.

The need for alignment of the two parts prior to bonding was eliminated by designing the mold base such that all features including ports and channels are integrated in the upper part. The lower half of the chip is completely featureless. Another advantage of forming devices with integrated ports via injection molding is that the 2 min injection molding cycle time does not depend on the number of ports. Therefore, this manufacturing technique appears ideal for the construction of high throughput devices that may require many interconnects. The upper limit on interconnect density is determined by the size of commercially available standard male fittings. In addition, the reversible nature of the connection facilitates burst pressure measurements, which we use to quantitatively evaluate the bond strength.

Bonding and burst pressure measurement

Bonding polymer substrates together to hermetically seal the channel with minimal distortion of micrometre-scale features is a very challenging issue that has received considerable attention. The importance of this fabrication step has led to the development of several bonding techniques ranging from simple thermal fusion, gluing, lamination, and solvent bonding to more elaborate methods such as laser welding, microwave welding, and resin-gas injection. In order to maintain the chemical homogeneity of all channel walls, we bonded our devices by thermal fusion. The bonding time, temperature, and pressure were varied and the burst pressure was measured for each set of bonding conditions (Table 1).

Although the burst pressure is not a direct measure of the bond energy at the interface, it is a valuable engineering parameter that sets the upper limit for device operation.

The burst pressure is measured using chips containing a single channel and two I/O ports. After pumping water into the chip for two minutes, the outlet port is plugged with a standard fitting and the back pressure is recorded. Fig. 6A shows the internal pressure build-up and sudden failure observed in a typical burst pressure measurement. Dramatic device failure occurred by delamination at the bonding interface (Fig. 6B).

The results of burst pressure measurements for each bonding condition are presented in Fig. 7. They indicate that the bonding temperature has the most significant effect on bond strength. Bonding at 80 °C affords chips bursting at less than 5 MPa, while a ca. 2-fold improvement in bond strength is observed at temperatures of 90 and 95 °C. These temperatures are well above \(T_g \) of the material Topas 8007 \(\times 10 \), measured to be 80 °C by dynamic scanning calorimetry. The strength of the bond achieved by thermal fusion results from chain entanglement of polymer chains located at the surface of the two parts constituting the chip. The chain mobility and therefore their ability to penetrate across the interface is much higher at a temperature above the glass transition. In contrast, bonding pressure seems to have a lesser effect once sufficient pressure is applied to bring the pieces into intimate contact to facilitate chain entanglement. Similarly, bonding time appears to have a small impact beyond a critical minimum time period.

Chips bonded at a temperature of 95 °C and a pressure of 0.28 MPa for 10 min exhibit the best resistance to pressure. As illustrated in Fig. 6, they start to leak at an in-channel pressure of over 12 MPa and burst at 15.6 MPa i.e. the highest operational back-pressure of any microfluidic device reported to date. The ability of these chips to sustain such high

<table>
<thead>
<tr>
<th>Trial</th>
<th>Temperature/°C</th>
<th>Pressure/MPa</th>
<th>Time/min</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>0.47</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>0.47</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>0.71</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>0.24</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>0.28</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>0.36</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>95</td>
<td>0.28</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

Fig. 5 Concept of microfluidic chip featuring integrated ports (A) and a 4-port microfluidic chip with commercial male fittings threaded integrated ports of an injection molded chip (B).
pressures without any observed leakage or break clearly
demonstrates the advantage of monolithically integrating
interconnects.

Porous polymer monolith in channel

Devices designed for biomedical analysis must be able to
perform standard processes such as sample preconcentration,
enzymatic digestion, and separation; all of which rely on
interaction between the analyte located in the mobile phase
and the surface of a solid stationary phase. However, the vast
majority of microfluidic devices use open channels that have a
small ratio of surface area to channel volume. The limited
surface area available for interaction characteristic of such
open channel configuration requires the use of longer
channels. Although long microfluidic channels can be
arranged in a small area by adopting a folded channel
configuration, the concomitant turn-induced band broadening
severely hinders separation resolution.72 While dispersive
spreading in turns can be corrected by modulating turn
geometry73,74 filling the channels with porous materials that
increase surface area has the potential to reduce the required
channel length by at least two orders of magnitude.75

For decades, chemical engineers have designed macroscale
processes that rely on high surface area porous packing
materials to conduct a variety of processes including catalysis,
adsorption, and separations. Excellent control over the porous
and chemical properties of particulate materials in conjunction
with a thorough understanding of transport phenomena in
packed beds have led to application of this technology to a
microfluidic format. Unfortunately, attempts to increase the
surface area of microfluidic channels by packing them with
porous particles did not afford fully satisfactory results.54,55,76

Our solution to increasing the surface area within the
channel involves the preparation of a continuous porous
polymer monolith that is covalently attached to the walls of
the channel.77 The use of UV light to initiate polymerization
reactions directly within the microfluidic channels allows the
simple use of a mask to define the exact location of the
monolith. In\textit{ situ} preparation of monolith begins with injecting
a liquid polymerization mixture containing photoinitiator,
monomers and porogens into the channel. Upon irradiation
with UV light the photoinitiator initiates free-radical poly-
merization exclusively in the exposed regions.78

If the wall of the channel is not chemically modified for
covalent attachment, shrinkage of the monolith during
polymerization may lead to a void space at the monolith–wall
interface.37 Obviously, any liquid would flow through the
large voids exhibiting much lower resistance to flow than the
porous polymer. This undesired flow can be avoided by
covalently attaching the monolith to the channel wall during
the polymerization. Although this attachment is critical to
minimize channeling at the monolith–wall interface, several
reports describing the preparation of monoliths in plastic chips
have omitted any modification step.43,44,47,49,50 The claim that
wall roughness prevents monolith dislodgement ignores the
effect that channeling at the monolith–wall interface has, for
example on separation efficiency.44 We have developed a
method enabling covalent anchoring of the monolith to the
polymer substrates by photoinitiating polymerization reactions
directly from the channel wall.79 This approach includes
controlled grafting of the walls with ethylene diacrylate
that creates a thin layer of polymer with a multiplicity of
pendant acrylate groups. These polymerizable vinyl-containing
moieties are then incorporated into the monolith during its
\textit{in situ} preparation and anchor it to the wall. As illustrated in
Fig. 8 Cross sectional SEM images of a microfluidic channel containing monolith covalently attached to the wall at magnifications of 600 × (A), 2000 × (B), and 10 000 × (C).

Fig. 8C, the channel was modified to produce a layer about 400 nm thick.

To demonstrate the reactivity of the anchoring layer, we prepared a monolith within our COC chip using a polymerization mixture consisting of butyl methacrylate, ethylene dimethacrylate, decanol and 2,2-dimethoxy-2-phenyl-acetophenone and carried out photopolymerization through a mask. Fig. 8 shows the monolith at various magnifications. The SEM micrographs reveal the globular structure of the monolith with a globule size of about 2 μm as well as large pores among clusters of these globules.

Conclusion

We have designed, developed, and implemented an injection molding process for the fabrication of disposable microfluidic chips with standard, integrated, ready-to-use interconnects that can withstand very high back pressures. In anticipation of chips with standard, integrated, ready-to-use interconnects we have designed, developed, and implemented an injection molding process for the fabrication of disposable microfluidic channels. With devices capable of withstanding such high back pressure we are now able to pursue truly high performance liquid chromatography (HPLC) on-chip. We are also targeting the integration of multiple monolithic modules in a single chip to perform preconcentration, digestion, and separation in the analysis of proteins.

Acknowledgements

Support of this research by a grant of the National Institute of General Medical Sciences, National Institutes of Health (GM-48364) is gratefully acknowledged. The authors also want to acknowledge Neriqua Gomez for his assistance with SEM in the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. This work was supported by the Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank James Wu of the Materials Sciences Division of Lawrence Berkeley National Laboratory for assistance with substrate annealing for lithography and John Morton of the Department of Mechanical Engineering, University of California at Berkeley for his valuable input regarding the tooling of the mold base.

References
