Aptamer-Based SERRS Sensor for Thrombin Detection

Biomolecular Nanotechnology Center, Berkeley Sensor & Actuator Center, Department of Bioengineering, University of California, Berkeley, California 94720, Lawrence Livermore National Laboratory, Livermore, California 94550, NSF Center for Biophotonics, University of California, Davis, California 95817

Received July 24, 2008; Revised Manuscript Received October 2, 2008

ABSTRACT

We describe an aptamer-based surface enhanced resonance Raman scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human α-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single-step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5′-capped, 3′-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes.

As nanobiotechnology progresses, aptamers, single-stranded (ss) oligonucleotides (<100 nt), have been promoted as ideal diagnostic reagents and potential antibody replacements for the development of biomolecular nanosensors due to their high affinity, specificity, and stability.1–9 Interestingly, certain aptamers have been reported to undergo distinguishable conformational changes upon interaction with their targets.10–15 Recently, numerous aptamer-based sensors (apta-sensors or aptamer beacons) have exploited binding-induced conformational changes to monitor the interaction with targets by measuring electron transfer,10,11,16,17 color change,12–14,18 or fluorescence quenching.15,19,20 However, these methods are limited by either the size or sensitivity of the sensors or by the complexity of the assays involved. For example, electrochemical sensors designed to measure electron transfer require electrodes on the millimeter scale to achieve sufficient sensitivity; colorimetric methods require a large amount of particle aggregation to induce a discernible color change; the previously reported surface-enhanced Raman scattering (SERS) aptasensor used multiple binding events, a sandwich assay requiring labeling of target molecules with the complex of gold nanoparticle/aptamer/Raman probe/silver nanoparticle after capturing the target.21,22

Herein, we report a sensitive, selective, and stable aptamer-based surface enhanced resonance Raman scattering (SERRS) sensor for a coagulation protein, human α-thrombin. The sensing mechanism is based on the single-step target binding event to aptamer, which results in a decrease of the intensity of SERRS signals of the probe molecule attached to thrombin binding aptamer (TBA) due to the displacement of TBA from a gold nanoparticle (GNP) surface. We hypothesize that the thrombin molecules, after dissociating from the displaced TBA, are able to participate in further binding/displacement event with TBA immobilized on the GNP surface. Furthermore, the SERRS technique provides ultrasensitive detection of the probe molecule by combining resonance Raman scattering with SERS enhancement in the presence of a metallic nanoparticles. As a result, our described aptamer-based SERRS sensor allows much simpler detection scheme, coupled with a lower limit of detection when compared to other techniques based on multiple binding events or nonresonant SERS.
TBA displacement event is realized by exploiting the propensity of single-stranded DNA (ssDNA) to readily adsorb onto GNP surfaces and to subsequently desorb upon its target binding. For the present study, a 15-mer TBA (5′-GGT TGG TGT GGT TGG-3′, “G” marked in bold is essential for quadruplex formation for thrombin binding) previously reported to bind thrombin with a dissociation constant of 25 nM, was used. A thiol functional group was added to the 5′ end for covalent binding to the gold surface, and the Raman probe (methylene blue, MB) was covalently bound to the 3′ end. The full sequence is as follows: [5′-(CH₂)₆-S-S-(CH₂)₆-TAA GTT CAT CTC CCC GGT TGG TGT GGT TGG T-MB-3′]. The thiolated TBA is adsorbed on the surface in two populations: chemical and physical adsorption. Chemisorbed TBA, bound through a covalent gold-thiol bond, would remain immobilized upon addition of sample solutions and provide a baseline signal level to verify the stability of the ssDNA aptamer and the light-sensitive MB during exposure to complex biofluids, surface plasmon heating, and incident

Figure 1. Schematics of detection method and preparation steps for the aptamer-based SERRS sensor. (a) A thiol-modified single-stranded TBA attached to MB is naturally unfolded in the absence of human α-thrombin target molecule. The unfolded TBA is physisorbed on GNP surface through electrostatic interactions or chemisorbed through gold–thiol bonds. As a large number of MB is present in the hot spots, where local surface plasmon resonance (LSPR) is induced, a strong SERRS signal for MB is observed. (b) In the presence of thrombin, TBA changes conformation into a G-quadruplex form and physisorbed TBA is thus displaced from the surface, resulting in the prompt decrease of the SERRS signal. (c) GNP-substrate is prepared by aggregating citrate-coated GNPs on an APTES-treated glass substrate. (d) TBA-GNP substrate is prepared by immobilizing MB-conjugated TBA on the GNP-substrate followed by a rinsing step removing unbounded TBA. (e) Thrombin is incubated on the prepared TBA-GNP substrate followed by a rinsing step removing displaced TBA–thrombin complex.
laser. Physisorbed TBA, in contrast, is held to the GNP surface only through electrostatic interactions between nitrogenous bases and the GNP surface and will be susceptible to displacement from the surface upon recognizing and binding target molecules.23,28,29

Quantitative and sensitive detection of thrombin is achieved by monitoring the strong SERRS peaks of methylene blue, covalently attached to TBA. Methylene blue has a $S_0 \to S_1$ transition centered at around 660 nm, allowing the incoming light in 632 nm wavelength to excite resonant vibration of the molecule. As a result, SERRS enhances Raman scattering signals by 10^3–10^5 times compared with nonresonant SERS while providing narrow spectral lines suited to quantitative analysis.30,31

Our detection mechanism is based on the change of SERRS intensity of the Raman probe (Figure 1). In the absence of thrombin, single-stranded TBA is unfolded and adsorbed onto a GNP surface. This brings the methylene blue in close proximity to the GNP surface (Figure 1a), resulting in surface enhanced Raman scattering for methylene blue. Upon introduction of the target protein, TBA undergoes a conformational change (G-quadruplex formation) induced by
a single-step binding event with thrombin (Figure 1b). TBA is thus being displaced from the GNP surface, hence reducing the intensity of the SERRS signal for MB.

The aptamer-based SERRS sensor was fabricated by a simple two-step procedure (see Supporting Information for a detailed description). Briefly, 80 nm colloidal GNPs were first aggregated on a glass coverslip previously treated with 3-aminopropyltriethoxysilane (APTES) (Figure 1c). CuSO₄ was used as an aggregation agent because the charge on Cu²⁺ induces aggregation of GNP covered with halide anions, resulting in a fractal structure of GNPs. 32-34 The aggregated GNPs presumably provide hot spots, where a strong surface plasmon is resonated locally. The APTES-coated glass retains GNPs on the surface through harsh rinsing steps and also prevents any further aggregation of GNPs that may be caused by salt ions. Second, MB-conjugated TBA was introduced to the GNP-aggregated substrate at room temperature and allowed to incubate overnight in the dark (Figure 1d). The glass slide was then thoroughly rinsed with 1× thrombin binding buffer (TBB) and the SERRS spectra were collected. Finally, thrombin was introduced and incubated for one hour at room temperature in the dark (Figure 1e). The substrate was rinsed, kept in 1× TBB solution, and covered with a cover glass.

The spectra were collected from aggregated GNPs in a fractal structure (Figure 2 inset, SEM image). The whole spectra are displayed after subtracting the fluorescence background from the original signal (Figure 2a) for clarity and the most prominent Raman peak at 1622 cm⁻¹ (assigned to ν(CCC) ring and ν(CNC) ring modes of methylene blue)35 was compared for quantitative analysis (Figure 2b, 2c). The effect of adding thrombin to the aptamer can clearly be observed through the reduction of the peak’s intensity at the 1622 cm⁻¹. Initially, the peak’s intensity dropped approximately 10% when introduced with 100 pM thrombin. However, with ≥1 μM thrombin concentration, the intensity dropped to about 50%, the observed saturation level (Figure 2c). We thus estimate the limit of detection for this assay to be 100 pM with a dynamic range spanning 100 pM to 1 μM.

To verify that the signal change is dependent on the specific recognition of thrombin, we added a nonspecific binding protein, bovine serum albumin (BSA). When the substrate was treated with increasing concentration of BSA (up to 1 μM BSA), we did not observe any significant change in the SERRS signal (Figure 2c). This suggests that the TBA was not displaced from the GNP substrate, as TBA did not bind to BSA. The specificity of the aptamer-based SERRS method was further investigated with a mutant TBA [5'- (CH₂)₆-5'-GGT TAA T-MB-3'] (nucleotides marked in bold indicate the position of essential “G” in the original aptamer sequence) in 1× TBB (Figure 3). Upon the addition of 100 nM thrombin to the mutant TBA-GNP substrate, we did not observe any decrease in the SERRS signal intensity. Taken together, these observations suggest that the displacement mechanism relies on specific recognition and that the aptamer-based SERRS method is highly specific for the detection of TBA—thrombin interaction.

The stability of the sensor was evaluated in the presence of complex mixtures including nucleases, i.e., serum (Figure 4). We observed ~20% signal decrease when the substrate was treated with 10% fetal calf serum (v/v in TBB), indicating that the TBA was minimally displaced from the aggregated GNPs by the serum’s constituents; the SERRS signal drop reached the 50% saturation in 75% serum. We hypothesize that the displacement of TBA in elevated serum levels was probably due to stronger electrostatic interference by serum’s salt contents rather than by nuclease activity in the serum, which are unlikely to degrade the immobilized, 5'- and 3'-capped TBA.36 With this “serum baseline,” the intensity in the presence of 10% serum, we proceed to introduce thrombin to both the TBA-GNP substrate and the mutant TBA-GNP substrate. With the addition of 1 nM thrombin in 10% serum to the TBA-GNP substrate, the signal dropped to ~75% from the serum baseline and the signal further decreased to a saturating level of 60%, when the thrombin concentration increased to 100 nM. In contrast, the mutant TBA-GNP substrate did not produce any significant signal change when exposed to 1 nM thrombin in 10% serum. These observations collectively indicate that the sensor can be performed in the presence of 10% serum. We also note that mutant TBA-GNP substrate is unaffected by nucleases in serum. Thus, the mutant aptamer both effectively and conveniently provides a “negative control” that enables specific protein detection for each respective assay performed in 10% serum.

The 50% saturation level can be attributed to the chemisorbed aptamer population. To verify that the signal was stemming only from chemisorbed aptamer, we repeatedly subjected the substrate to harsh conditions: high NaCl (1.4 M), high serum (100%) wash, and high thrombin (1 μM) interaction (Figure S1). In all cases, we observed a 50% maximum signal reduction, suggesting that ~50% of the
Figure 4. Evaluation of the reliability of the developed method and the aptamer-based SERRS sensor. Assays were performed in 10% fetal calf serum (v/v) in 1x thrombin binding buffer. Based on a “serum baseline at 10% serum,” the signal dropped to ~75% with the addition of 1 nM thrombin in 10% serum, while the signal dropped to a saturating level of 60% when the input thrombin was increased to 100 nM. Mutant TBA-GNP substrate was unaffected with the input of 1 nM thrombin. Note that the y-axis, i.e., normalized intensity (I/I_{100% serum}), was plotted as a ratio of the measured intensity at each protein concentration over the intensity without thrombin in 10% serum. Data shown represents the mean, with standard deviation, of four separate measurements.

Acknowledgment. This work has been supported by funding from Lawrence Livermore National Laboratory (LNL-NRL-405475) for a Lawrence Scholar Program predoctoral fellowship, Intel, Inc. (Integrated Confocal Nanofluidic SERS for Proteomics) and DARPA (HR0011-06-1-0050) for H.C., the partial support of NIH Grant AI065359 for J.B.H., and the National Science Foundation Center for Biophotonics managed by UC Davis (PHY 0120999). Authors acknowledge Tammy Olsen for providing hollow gold nanoparticles, which were used for the preliminary experiments, Nicholas O. Fischer for providing guidance in aptamer immobilization.

Supporting Information Available: Materials, preparation of sensor, experimental conditions, and evaluation results on 50% signal saturation. This material is available free of charge via the Internet at http://pubs.acs.org.

References