Nanowire-assisted Micro Loop Heat Pipe with Porous Silicon Wicks

Hongyun So, Jim C. Cheng and Albert P. Pisano

Berkeley Sensor and Actuator Center (BSAC)
Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Research Goals

- **Background**: Thermal management of high power density electronics is an essential issue for next generation of computer, integrated circuit and military systems.

- **Objective**: To develop and demonstrate the requisite technology for a planar thermal ground and nanowire assisted micro loop heat pipe.

- **Key Components**
 - Porous silicon wick – to feed water from reservoir to the evaporator surface.
 - Zinc oxide nanowire – to pull water up from inside the silicon pores.

Fabrication Process

1. Porous Silicon Wick

 - **Thermal CVD furnace**
 - **Silicon and silicon carbide (3C-SiC)** substrate coated with 1.5 nm Au catalyst
 - **Ceramic** boat packed with 1:1 mixture of ZnO (99.999%, metals basis) and graphite (99%, crystalline) powder
 - Argon and oxygen gas at 25 and 0.5 SCCM, respectively
 - 900 °C for 10 minutes

 Fabrication Process
 - **Metal-assisted etching**
 - **Electrochemical etching**
 - **Backside etching**
 - **SiO₂ patterning and isotropic wet etching**
 - **Release etching**

2. ZnO Nanowires (VLS, Vapor-Liquid-Solid)

 - **SiC substrate**
 - **Metal Deposition** (500 ml 49% H₂ + AgNO₃, for 2 min)
 - **Branched Silver Dendrites**
 - **Metal assisted chemical etching**
 - **Electrochemical etching**
 - **Ag particle**

 Nanostructure

Results

1. Porous Silicon Wick

 - **Electrochemical etching**

2. ZnO Nanowires

 - **Si substrate**
 - **3C-SiC substrate**

 - **Metal deposition** (500 ml 49% H₂ + AgNO₃, for 2 min)
 - **Branched Silver Dendrites**

 Nanostructure

Conclusion & Future Works

Summary
- The planar thermal ground and nanowire-assisted micro loop heat pipe has been proposed for the next generation cooling system.
- Two key components (i.e. porous silicon wick and ZnO nanowires) have been fabricated and synthesized to circulate and transport the working fluids efficiently.
- Two fabrication techniques (i.e. the electrochemical and metal-assisted chemical etching) for porous silicon wick has been introduced.
- The bottom-up synthesis (VLS) for ZnO nanowires has been demonstrated on both Si and SiC substrate.

Future Works
- Anodic bonding between three layers and hermetic sealing for packaging.
- Measurement for the mass flow rate of working fluid and numerical calculation for the analysis of heat transfer and thermal efficiency.