Project Overview - Objectives

- Develop an integrated manufacturing process to connect nanostructures with larger scale systems.
- Further characterize process to enhance yield, material characteristics.
- Study CNT material, electrical, thermal, and mechanical properties.
- Determine the relationship between growth conditions and physical properties.
- Design of CNT-based sensors and transducers.
Process Review

(a) Silicon Oxide Substrate
(b) Etched Silicon
(c) Oxide Etch
(d) Catalyst
(e) C_2H_4
(f) E

Past Results

E

BSAC ©2003 Fall IAB. Confidential Information. Not to be made public without permission from UC Regents.
Progress

+42.5V +40V

ground

10 μm

Progress

2 3 4 5,6 10 um

ground

+42.5V +40V

BSAC ©2003 Fall IAB. Confidential Information. Not to be made public without permission from UC Regents.
CNT I-V Characteristic

CNT-Microstructure
Mechanical Contact Strength
CNT-Microstructure
Mechanical Contact Strength
CNT Inspection

200 nm

CNT Inspection

100 nm
Results

- Carbon Nanotubes driven to connecting nearby microstructures.
- Excellent electrical contacts – linear I-V behavior as expected.
- Initial sensing demonstrated – N₂ pressure changes differential resistance by 13%.
- Mechanical contacts stronger than nanotubes in most cases.
- TEM analysis: Largely base growth, Multi-walled tubes, 3-24 nm diameter seen.

Future Work

- Further process analysis and modification
 - Achieve single-walled tubes.
 - Tip growth.
- Design for application in biological and gaseous sensing.

Acknowledgements

- GAANN Fellowship
- Mu Chiao – device fabrication
- Ron Wilson and Bob Prohaska – SEM imaging
- ChengYu Song, Eric Stach (NCEM, LBL) – TEM imaging
- UC Berkeley Microlab