Mesh Networked Sensors for Parking Inventory Management
Overview

• Business Background
• Our Deployment
• On-street Measurements
 – Parking and ‘Advice for the Gambling Parker’
 – Network
• A Short Wish List for Mesh Networks
The Importance of Inventory Management

Payment Systems

Enforcement & Workforce Mgmt

Demand Mgmt & Public Information

Actual Parking Demand & Usage

Actual Parking Capacity & Inventory
Inventory Managed Parking

More Violations Identified

Lower Cost of Ticketing

- More Violations Identified
- Lower Cost of Ticketing

- $0
- $5
- $10
- $15
- $20
- $25
Consumer Convenience: Parking and Payment

Space 33
- **Arrive:** 9:14am
- **Check In:** 9:19am
- **Depart:** 10:22am
- **Duration:** 1:08
- **Charge:** $2.25

Space 42
- **Arrive:** 8:17am
- **Check In:** 9:12am
- **Depart:** 5:41pm
- **Duration:** 9:24
- **Charge:** $10.00
The Unpaid Dollars

- **$6.5B** Unpaid Use
- **$2.0B** Paid Use
- **$2.0B** Tickets
- **$40B** Unticketed Violations

Violation Capture Rate: ~5%
Meter Payment rate: 20-25%
Meter Occupancy rate: > 80%
Our Test Deployment

- Continuous monitoring of ~20 spaces via mesh networked raised pavement marker
- 300 instrumented spaces soon!
Battery St Total Spaces: 10

<table>
<thead>
<tr>
<th>SPACE NUMBER</th>
<th>CURRENT STATUS</th>
<th>ARRIVAL</th>
<th>LIMIT</th>
<th>DURATION</th>
<th>OVERSTAY?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1343</td>
<td></td>
<td>20:39</td>
<td>120 min</td>
<td>0:46</td>
<td>NO</td>
</tr>
<tr>
<td>1345</td>
<td></td>
<td>20:18</td>
<td>120 min</td>
<td>1:07</td>
<td>NO</td>
</tr>
<tr>
<td>1347</td>
<td></td>
<td>20:33</td>
<td>120 min</td>
<td>0:52</td>
<td>NO</td>
</tr>
<tr>
<td>1349</td>
<td></td>
<td>20:23</td>
<td>120 min</td>
<td>1:02</td>
<td>NO</td>
</tr>
<tr>
<td>1350</td>
<td></td>
<td>17:17</td>
<td>120 min</td>
<td>4:08</td>
<td>YES</td>
</tr>
<tr>
<td>1351</td>
<td></td>
<td>21:08</td>
<td>120 min</td>
<td>0:17</td>
<td>NO</td>
</tr>
<tr>
<td>1353</td>
<td></td>
<td>19:48</td>
<td>120 min</td>
<td>1:37</td>
<td>NO</td>
</tr>
<tr>
<td>1355</td>
<td></td>
<td>20:25</td>
<td>120 min</td>
<td>1:00</td>
<td>NO</td>
</tr>
<tr>
<td>1357</td>
<td></td>
<td>20:42</td>
<td>120 min</td>
<td>0:43</td>
<td>NO</td>
</tr>
<tr>
<td>1359</td>
<td></td>
<td>20:01</td>
<td>120 min</td>
<td>1:24</td>
<td>NO</td>
</tr>
</tbody>
</table>

Notes:

1. Occupancy: Percent of available time used for parking.
2. Turnover: Average number of parking sessions per hour.
3. Overstay: Number of parking sessions exceeding posted time limit.
Occupancy by Time of Day
Block: 1301 Battery
Period: February 2006

- **Off hours Use**
- **Metered Use**
- **Meter Receipts**
Advice for the Parking Gambler

- Average # of tickets per meter per month = 2
- Parking Ticket Cost ~ $40
- Monthly meter time cost ~ $400
- Optimistic monthly advantage of not paying for meter time ~ $320
- **Odds favor not paying for meter time**

Disclaimers:
- Parking control officers are known to periodically swarm areas
- Your results may vary - pls don’t call us 😊
Network Lifetime Results

- Parking sessions detected – 6100
 - 11 parked cars per space, per day
- Average Network Latency
 - 2.5 – 4.5 seconds
- Path Stability
 - 73%
- Network Reliability
 - 99.975%
Daily Network Statistics

Path stability = packets ‘ack’ed / packets sent

Network reliability = % of packets successfully delivered
Standardizing Network Management aka ‘Stuff I wish we didn’t have to build’

- For manageable deployment one needs:
 - Configuration Management
 - How often does mesh report?
 - Where are things located?
 - Security Management
 - Fault Management
 - Performance Management
 - Event correction/root cause
 - Alarming
- Proprietary/custom solution…. OR…
- Leverage conventional solutions!
Candidate Solution: SNMP

- ‘Conventional’ networking vendors use this
- The HTTP of network management
- Lots and lots of NMS tools
SNMP and Mesh Network Management: A Sample

Generics Traps

<table>
<thead>
<tr>
<th>Generic Traps</th>
<th>Gateway Relevance</th>
<th>Mote Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColdStart</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>WarmStart</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>LinkDown</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>LinkUp</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Authenticationfailure</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>egpNeighborLoss</td>
<td>?</td>
<td>Y?</td>
</tr>
<tr>
<td>enterpriseSpecific</td>
<td>?</td>
<td>Y</td>
</tr>
</tbody>
</table>
Network Management: The Bottom Line

• Mesh and non-mesh networks have significant overlap of important performance metrics
• A standard network management interface allows the integrator to focus on the application, not the network
 – Obvious analogy: HTML, HTTP
• Is SNMP or ‘SNMP+Mesh’ the solution?
 – There is much to leverage from SNMP, but anything standardized and interoperable would be great.
Acknowledgements

• Dust Networks
• Streetline Team