Harvesting Energy from Energized Conductors

Igor Paprotny

BSAC Seminar
Thursday, October 14, 2010

Outline

- Introduction/Motivation
- Overview of AC Energy Scavenging
- Our AC Scavengers
 - Mesoscale Design (PZT bimorph)
 - MEMS Design (AlN quad-folded spring)
- Conclusions/Future work
Acknowledgements

Richard Xu, WaiWah Chan, Giovanni Gonzales, Duy Son Nguyen, Christopher Sherman, Dr. Eli Leland

… and the awesome BSAC researchers and staff!

The funding for this project was graciously provided by grants from the California Energy Commission (CEC) - 500-01-43, 500-02-004 and POB219-B, as well as research and infrastructural grants from the Berkeley Sensor & Actuator Center (BSAC) and the Center for Information Technology Research in the Interest of Society (CITRIS), at UC Berkeley.

The U.S. Power Grid

- Contains:
 - 9,200 generating units
 - 1,000,000 MW capacity
 - 300,000 miles of T. lines

Department of Energy

Congressional Budget Office

DeviceDaily.com
There are Challenges

- Increasing number of outages:
 - A 126% increase in non-disaster related blackouts affecting at least 50,000 customers
 - 36 in 2006 alone!
 - U.S. electricity blackouts skyrocketing, CNN, Aug. 9, 2010

- Reduced Transmission $$'s$$
 - $5\,B in 1975
 - $2.5\,B in 2000

- Renewable Energy Penetration

The New “Smarter” Grid

- Smart Grid → dramatic increase in number of sensing nodes on the grid
 - Staggering numbers: PG&E alone estimate the need for 900,000 I/V sensors on their network
 - Prohibitive sensor fabrication ($3,000 pr. node) and installation costs
The New “Smarter” Grid

Smart Grid → great opportunity for MEMS

MEMS Power Systems Sensing

- Using MEMS technologies, we can:
 - Dramatically reduce the cost of sensors for power systems
 - Batch processing
 - Wafer-level integration
 - Reduce installation cost/nuisance
 - Small, easy to install sensors
 - Can be embedded in new, or attached to legacy equipment
 - Self-powered
 - Low-power MEMS sensors and radios

MEMS is Smart Grid enabling!
Our Goal

Ubiquitous sensing in power systems

- Appliances extension cords that report power usage
- Wireless “sticky tab” current and voltage sensors
- Underground cables that report status of their operation
- Sensor to measure powerflow in the Smart Grid

Will improve:
- Energy efficiency
- Utilization and operation of our power grid
MEMS Proximity Sensors

- Advantages:
 - Small and inexpensive
 - Easy to fabricate and encapsulate
 - No galvanic contacts necessary
 - Low or no power

Diagnostic Sensors
Prognostic Health Management (PHM)

Underground Power Distribution Cable

Paprotny et al., ISEI 2010, Seidel et al., ISEI 2010
Ongoing Implementation: Sub-metering

- Implementing the modules to sub-meter selected circuit-breaker panels in Cory Hall, UC Berkeley
- Modules are “sticky tabs” placed on top of the circuit breaker

AC Energy Scavenging

- Scavenge magnetic energy generated by a current in a nearby conductor
- No galvanic coupling with the conductor
- Couple to the AC-generated magnetic field
AC Energy Scavengin Overview

- **Current Transformer (CT)**
 - Large P.
 - No OCP
 - No zip-cords
- **Piezoelectric AC Scavenger**
 - Moderate P.
 - No encircle
 - Zip-cords
 - OCP
 - Moving parts
- **Coil w. flux concentrators**
 - No encircle
 - No OCP
 - No moving p.
 - Low voltage
- **Rogowski Coil**
 - No OCP
 - Instaion
 - Low Power

Piezoelectric AC Energy Scavenger

\[F = B_{r-y} \int \frac{d(H_y)}{dy} dV \]

\[I(AC) \]

Electrical \rightarrow Mechanical \rightarrow Electrical
Piezoelectric AC Energy Scavenger

(4) overcurrent protection (3) storage

(2) power conditioning

(1) transducer

System Components

Investigating Two Approaches

Mesoscale

- Cantilever w. magnet
- Maximize power

MEMS

- Maximize power within strict size constraint
 - IC-sized unit
Mesoscale AC Scavenger

- PZT bimorph
- Dual magnet configuration
 - Designed to couple to a single conductor
- Overcurrent protection

Experimental Results

Demonstrated harvesting of 11 mW from 50 A_{RMS}
MEMS Design

- Fit within $10 \times 10 \times 4$ mm3
- Magnetic coupling optimized for zip-cord
- Based on AlN, Silicon

MEMS Design

- Quad. fixed-fixed spring system*
- Electrode patterned to avoid charge cancelation
 - Optimized

*Inspired among other by A.C. Waterbury et al., IMECE 2008
Modeling

- At present, designed for low current operation (1-2 A\textsubscript{RMS})
 - Requires overcurrent protection
- Modeling:
 - With single AlN layer, 2 µW
 - Multiple layers/design modifications \rightarrow 10s µW

Fabrication Process

- SOI process
 - Using conventional NdFeB magnets (K&J Magnetics, Inc.)
- Fabrication ongoing!
Conclusion

- Developing AC energy scavengers to support self-powered power systems sensing
- Coupling to the AC magnetic field using a magnet gives us an advantage over other “coil-based” methods
- Mesoscale AC Scavenger:
 - We have demonstrated scavenging 11 mW from 50 A_{RMS}
 - Working on overcurrent protection
- MEMS AC Scavenger:
 - Should be able to scavenge 10s of µW
 - Fabrication ongoing

Next Steps – Challenges

- Overcurrent protection
 - How to efficiently dissipate energy during overcurrent conditions
 - Steady-state overcurrent
 - Fault current (e.g., lightning strike)
- Size-limitations of MEMS AC Scavenger
 - How small can MEMS AC Scavenger be to still generate energy
 - Efficient (MEMS) power conditioning
 - Theoretical limits?
 - Store mechanical energy?
Next Steps – Challenges

- Resonant Frequency Modification
 - How to change the resonant frequency of the scavenger to match/miss-match the driving frequency
 - Nonlinear springs/material

- Benign Sensor Placement
 - Prove to the power companies that my sensor does not degrade equipment performance.
 - Interesting physics

- Longevity Engineering
 - Will my sensor/scavenger work for 40+ years?

- MEMS/Wafer level integration

Questions?

http://www.eecs.berkeley.edu/~igorpapa/
igorpapa@eecs.berkeley.edu
Radio Mote

- Wireless reporting
 - Enable
 - hermetic packaging
 - Large-scale deployment

- Low-powered radio motes
 - TI eZ430-F2013
 - Dust networks
 - Pico cube

- IEEE 802.15.4 protocol
 - Secure
 - Sensor → mesh network → www