% Many thanks to Sanjay for setting me straight (again!) on % tensors. % From: Sanjay Govindjee % Ok here is my run for E110 which does work out: -sg. % stiffness matrix c = [ 165 64 64 0 0 0; 64 165 64 0 0 0 ; 64 64 165 0 0 0 ; 0 0 0 80 0 0 ; 0 0 0 0 80 0; 0 0 0 0 0 80] % (Define loading direction) dir = [1;1;0] % get a unit vector in that direction v = dir/sqrt(dir'*dir); % (Get rank 2 Tensor for for the stress) s = v*v'; % s = (for 110 direction) % 0.5000 0.5000 0 % 0.5000 0.5000 0 % 0 0 0 %(Map rank 2 tensor into a 6x1 vector ie. Voigt Notation) sv = [s(1,1) ; s(2,2) ; s(3,3); s(1,2) ; s(2,3) ; s(3,1)]; % sv = (for 110 direction) % 0.5000 % 0.5000 % 0 % 0.5000 % 0 % 0 % (Get strain as a 6x1 vector) inv(c)*sv; %ans = (for 110 direction) % 0.0028 % 0.0028 % -0.0022 % 0.0063 % 0 % 0 % (Map 6x1 Voigt strain vector into rank 2 tensor form; make sure you % map engineering shear strains to tensorial shear strains) eps = [ ans(1) ans(4)/2.0 ans(6)/2.0; ans(4)/2.0 ans(2) ans(5)/2.0; ans(6)/2.0 ans(5)/2.0 ans(3)]; %eps = % 0.0028 0.0031 0 % 0.0031 0.0028 0 % 0 0 -0.0022 % (extract relevant strain) ans = v'*eps*v; % (Divide into stress to get modulus) 1/ans % ans = (for 110 direction) % 169.1240