Overview

- Electrostatics
- Basic equations
- Early applications
- Use in systems
- Scratch drive

Electrostatics work sheet

- Assume you have a gap-closing actuator with 1 meter square plates separated by 1 meter. At 15 V , what is the force between them?
- What if the plates are 1 micron square separated by 1 micron?
- 1 mm square, separated by 1 micron, at 150 V ?

Unit force $=1 / 2 \varepsilon \mathrm{~V}^{2}$
Area multiplier $=\mathrm{A} / \mathrm{g}^{2}$
$\mathrm{F}_{\mathrm{p}}=\left(1 / 2 \varepsilon \mathrm{~V}^{2}\right)\left(\mathrm{A} / \mathrm{g}^{2}\right)$
$1 \mathrm{~m}^{\wedge} 2 \mathrm{x} 1 \mathrm{~m}$
1um^2x1um
$1 \mathrm{~mm}^{\wedge} 2 \mathrm{x} 1 \mathrm{um}$
, 150 V

Side Drive Motors

Top view of SDM

First polysilicon motors were made at UCB (Fan, Tai, Muller), MIT, ATT Typical starting voltages were $>100 \mathrm{~V}$, operating $>50 \mathrm{~V}$

Fig. 5 Linkage System for Force Amplification Fig. 8 Micro-Flex Mirror Linkage System.
Micro Electro Mechanical Systems
Jan., 1998 Heidelberg, Germany

Summary

- Electrostatics use moderate to high voltage
- Force goes as $\mathrm{V}^{2} / \mathrm{g}^{2}$
- Paschen limits convenient voltages to 200
- Force is scale independent
- Easy process integration
- Many mechanism options

