CHAPTER 6 Beamtheory blah

Synopsis
ionshipk = £ = M, _ab
Moment/curvature relationship K = 5" Bl | = B
: , X2 2
Bending under end loading y(x) = £ (x—3L)F + 25M

L3 L?
y(L) = 35 oM

Axia compression: K, = EI:,&F

Torsional deflection 8 = %

Matrix representation of end deflection vs. applied force/moment
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Beam theory blah

Linear beam theory

Solving for the 3D deformation of an arbitrary object under arbitrary loading condi-
tions is the domain of the theory of elasticity, and in general a nasty problem. We
reduce the problem to a single dimension, where all quantities on the beam vary
only as functions of a single variable such as arc length. Thisisthe fundamental
assumption of beam theory, which is tractable for hand analysis, and very often just
as accurate for MEM S problems as the full three dimensional theory of elasticity.

A further assumption is that the deflectionsare“small”. Let us start by assuming
that the deflections are infinitesimal, and then see what the limits to this linear
beam theory are in the next chapter.

We will also assume that the cross-sections of the beams vary smoothly in shape
along the length of the beam, and that the cross-sectional dimensions are small
compared to the length of the beam.

The goal of this chapter will be to develop the relationship between forces and
moments applied at the ends of a beam and the resulting deflections. Sincethisisa
linear theory, the resulting relationship will take the form of a matrix.

Bending

Find yourself a big rubber eraser and draw a cartesian grid on one side. Now bend
the eraser by pushing your thumbs up in the middle and pulling down on the ends.
You should see something like what'sin Figure xxx. Your fingers are doing a
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Bending

decent job of applying a uniform moment along the length of the eraser, and it is
doing its best to bend to a constant radius of curvature.
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FIGURE 23. Deformation of a cartesian grid under a uniform torque.

A horizontal line midway between the top and the bottom of the eraser is known as
the neutral axis because it will stay the same length before and after the bending,
whereas lines above the midpoint will get longer, and lines below the midpoint will
get shorter.

We define a coordinate system on the undeformed beam (eraser) where x isthe dis-
tance along the length of the beam and z is the vertical distance above the neutral
axis of the beam. If we take the thickness of the beam to be a, then we see that z
varies from -a/2 to a/2.

From geometrical argumentswe can show that the strain as a function of position
along the beam is

e(x,y,2) =€e(x,2) = (EQ 27)

Z_
p(x)
where we are alowing the radius to vary as a function of position aong the length
of the beam.

Recalling that the stress and strain are related by the Young's modulus, we can
write an expression for the stress (in the x direction) as a function of position along
the beam

-z

(XY, 2) = Ep(x)

(EQ 28)
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Integrating over the cross-section of the beam we see that

NI

a a

2 _q2 z _ _E 22" _ Ea%
M(x) = I_gzcxxbdz = Isz——-p(X)bdz = 500%3 T Tapey @
2 2 >
2

Which is the moment/curvature relationship for beams, and is usually written

1. M®&
p(x) _ EI(x) (EQ30)

where p istheradius of curvature, M is the moment, and

a

=

(EQ 31)

isthe moment of inertia of the cross-section. The cross-sectional geometry can
vary slowly as afunction of position along the beam, making | a function of x. In
principle, E can also be afunction of x. Discontinuities or rapid changesin the
Cross section reguire more detailed modeling.

The curvature of the beam is approximately the second derivate of displacement y
with respect to a fixed coordinate system x

2
dy 2
_ dx? _dy
S A v (EQ32)
(1 + &
dx
from which we see that
d2 M(x)
d—xyzz EIX (EQ 33)

Example: Calculate the shape of a cantilevered beam with a pure moment applied at
the free end of the beam.

Soln: The cantilevered beam implies a boundary condition of
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Bending

y(0) =0, %((0) =0 (EQ 34)

We can calculate the moment at any point along the beam using a freebody diagram
where we break the beam at alocation x along itslength. In order to maintain static
equilibrium we must have the sum of all forces and moments on a body equal to

zero. Thisimpliesthat acrossavirtual break at location x, we would need to apply

Q\JMO 27\2 Mo

FIGURE 24. Freebody diagram for transmission of moment along the beam
at location x.

-MO on the left end of end of the end body, which impliesthat a moment MO must
be applied on the right end of the remaining cantilever. So

M(x) = M, (EQ 35)

Now we have an ordinary differential equation with aboundary condition. We can
integrate the ODE directly, yielding

dy _ Mo
ax - EIx+Cl
sz
() = 5+ Cx+ G,

Subsituting the boundary conditions shows that the constants of integration are
zero. Notethat the actual shape of the deflected beam will be asection of acircle (a
curve with a constant radius of curvature). The expression that we derived isan
accurate approximation to acircle for x much lessthan p. The error between the
expression that we calculated and the true shape is due to the approximation that the
radius of curvature was equal to the reciproca of the second derivative.

Often we are just interested in the deflection of the endpoint of the beam, whichis

v = 2o = Yy = By
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which gives ustwo spring constants

_L2 oL

Kyo = 2gr Koo = g

Example: Consider an isotropic beam of length L and cross section aby b. Com-
pare the angular deflection when amoment is applied axially or transversely on the
beam.

Soln: Since we arein the linear region we can compare deflections simply by look-
ing at aratio of the two spring constants.

Example: A cantilevered beam has arigid body bolted on the free end. A force
transverseto the end of the beam is applied on the body at adistance r from the end
of the cantilever. Find the value for r which minimizesthe angular deflection of
thetip of the cantilever, and calculate the resulting linear stiffness.

Soln: r = -L/2, K = ky4

Y X L-x
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FIGURE 25. Freebody diagram for transmission of moment along a beam
with force loading.
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efc

Ex: apply load st. the moment is zero at the center of the beam
Ex: deflection of a beam under its own weight

Ex: residual stressinduced bending

Caveats: only worksfor small deflections

M oments of common cross-sections

Example: moment of an I-beam

Bi-metal and composite beams

Anticlastic curvature and bending of plates

The Poisson’sratio tells usthat if the top of the beam isin tension in the x direction
then there will be local contraction in they direction (orthogonal to the axis and
direction of bending). Similarly, if the bottom of the beam isin compression, then
there will be an expansion in they direction. This resultsin a moment aong the
width of the beam which will tend to bend it upward.

(EQ 36)

SN oy .

FIGURE 26. Anticlastic curvature.
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Beams which are wide compared to their thickness can not expand and contract
laterally as much as narrow beams. Thisresultsin an increased equivalent stiffness
E

EBplate = 7702 (EQ 37)

Torsion

Consider acylindrical bar with an equal and opposite axia torque of magnitude M
applied to the two ends, resulting in atwisting of the bar by an angle 6. Looking at
any cross-section along the length of the bar we see from geometric arguments that
the shear strain at adistance r from the central axisis

V=1 (EQ38)

We can cal culate the moment required to generate that strain by integrating the
moment induced by the shear stress over the surface of the cross-section

R 21 R 21 R 21
M = r oF = r OdA = r (Gyr)drdd (EQ 39)

JJ e = ) e ],

_ 2mGR', _ JG
M————-——L 0 = Le (EQ 40)
where
4

J = I[-ZB— (EQ 41)

J isknown as the polar moment of inertia, and the formula given above is true for
circular cross sections. For rectangular cross sections the formulais

K
Ko = 19 (EQ 42)

where for a section of dimension 2aby 2b
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Torsion

16 b b4
= 3| — f— - s —
Kiect = ab [3 3.36a(1 12a4ﬂ (EQ 43)
for a= b (from Roark). Inthe case of a square cross-section of dimension 2athis

reducesto K = 2.25a*. For high-aspect ratio beams such as those found in LIGA
or DRIE silicon, b/ais often 0.1 or less, in which case an approximation of

K = 5ab3 (EQ 44)
is accurate to within afive percent for any beams routinely encountered.

The maximum shear stress occurs at the midpoints of the two longer sides, and is

givenby T, = é%l\—s—z for high aspect ratio beams, 1., = O':3M for square beams,

_2M :
and 1., = — for acircle.
r3

Note that since the maximum shear strain is a property of the cross-section only,
and the spring constant is a function of the length, that the angular deflection at
which the beam fracturesin pure torsion is proportional to length. For a given
cross-section we can look at the maximum deflection in radians (of torsional
deflection) per meter (of length)

8ab?

T
Mf t 3 max 8 LT
Bracture = r}zt;ure = 5ab3G = EB n(;ax (EQ 45)
L

where again 2b is the short dimension of the rectangular cross section.

Example: Calculate the torsional stiffness of an isotropic beam with a shear modu-
lus of 80GPa, alength of 500 microns, and a cross section of 2 by 40 microns. Also
calculate the deflection and applied moment corresponding to failure if the shear
strain limit is 800M Pa.

Solution: From Eqgn. 42 and Eqgn. 44 we find that
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5(2><1O_5m)(1><1O_6m)3(8><1010—'\-|—2)
K. = KG _5ab3G _ m
o = = =

L L 5x10'm

N
mt—
= 32851541004 = 16410 Nm

The maximum shear strain occurs on the midline of each of the 40 micron sides,
and has a magnitude of

3M 3 3 16 1
T = = = 105+ 12M = 1.9x10 —=M
" 8ab?  g(2x107°m)(1x10 °m)? 8(2)m3 m?

so the torque corresponding to the strain limit is given by

N
T 8 m2 ~
= max . 80 M, 168Nm

1_9x1016_.]:_ 1.9><1016_:!-_
m3 m3

Mfracture

which corrseponds to a deflection

0 _ Mfracture _ leo_BNm
fracture — K9 - 16><1O_9Nm

= 1.25rad

(EQ 46)

References
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Problems

Problems

1. What istheratio of the transverse stiffness of a square beam to itsaxial torsional
stiffness? To itstransverse torsional stiffness?

2. A pureforceisto be applied at some point of the cross-section at the end of a
cantilevered beam. How should it be applied (location and direction) to maxi-
mize deflection? Minimize deflection? To maximize angular deflection? Min-
imize angular deflection?

3. Sameas above, but with a pure moment.
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