
3D MEMS Design via Matlab Interactive Plots

Nanping R. Lo and K.S.J. Pister*

EE Department, UCLA, Los Angeles CA, USA, nanping@ee.ucla.edu
*Department of EECS, UC Berkeley, Berkeley, CA, USA, pister@eecs.berkeley.edu

ABSTRACT

Matlab is utilized for 3D MEMS design. A
preprocessor, written in C, processes the standard, 2D CIF
design by applying the topology and spatial information to
the design. The Mat3d toolkit then takes the output of the
preprocessor and utilizes Matlab’s 3D graphics functions to
generate a 3D plot of the 2D CIF design. Using the Mat3d
toolkit’s library of commands as well as the existing Matlab
commands, the design within the 3D plot then can be
viewed from desired magnifications as well as from
different perspectives. Objects within the plot could also be
available for manipulations such as rotation and translation.
During manipulation of the objects in the plot, a Matlab-
based collision detection algorithm can be activated for
detection of objects coming in contact. A set of raytracing
commands is also available with this toolkit, which will ad
in simple MOEM design. The preprocessor is currently
capable of processing manhattanized CIF with box
geometries. The package is available at
http://www.ee.ucla.edu/pub/mat3d.

Keywords: 3D MEMS, CAD, Matlab, Interactive, Plots.

1 INTRODUCTION

Several commercially available MEMS CAD packages
perform excellent rendering of microstructures. However,
since 3D display is not the primary goal of these packages,
other than providing views from different perspectives, the
renderings from these MEMS CAD packages are static and
do not permit interaction with parts within the design.

However, with 3D MEMS, it often requires the designer to
imagine and visualize how pieces of initially coplanar
structures would eventually have to come off substrate to fit
together in 3D space to form a 3D system. Exploring the
design parameters of how the various coplanar pieces might
fit with hand sketches is a cumbersome process. An
interactive tool that would provide an environment to
virtually manipulate pieces within a design would expedite
the process. Previous works by the authors attempted to
address the interactivity issue with a custom software
package and Java/VRML solution [1]. It was not widely
used because it was viewed as for visualization only and the
installation procedure was complicated.

In this paper, the authors extend the solution for
interactive 3D MEMS design by using Matlab as the
underlying analysis and displaying engine. Using
commands in the toolkit’s command library, as well as
existing Matlab commands [2], pieces within the design are
no longer static but can now be manipulated. The designer
can fold structures away from substrate directly from their
2D, flat CIF design, and see how multiple pieces in a design
might interact with various movement of each piece.
During manipulation of objects in the plot, a Matlab-based
collision detection algorithm can be activated for detection
of objects coming in contact. The visualization is now
simpler with the capability to view the 3D plot from desired
perspective and magnification by adjusting the graphics
display commands. The toolkit is customizable.
Raytracing, for basic MEOM design is have already been
incorporated in this toolkit.

Figure 1 outlines the overall process flow for using
Matlab’s 3D plot for interactive MEMS design. The

Figure 1. Process flow of plotting 3D MEMS designs with Matlab.

CICICICIFFFF
Flat 2D
Design

User
Command

Matlab
Scritp File Intermediate

M3D format

MEMS Designs
in Matlab
3D Plots

• Topology
• Process
parameters

• Layer boolean
operation

• Block
separation

Cif2matCif2matCif2matCif2mat
(preprocessor in C) • Rotation, Translation

• Ray tracying
• Collision detection

Mat3dMat3dMat3dMat3d

Matlab
(V5.2, Windows and Unix)

package is composed of two major components, a
preprocessor, and a Matlab toolkit. This paper will describe
the various necessities for using the toolkit, pieces of the
preprocessor, and the components of the toolkit. Sample
plots will be included in the last section.

2 DESIGN PRELIMINIARIES

In order to automatically obtain the linkage and reflector
information from a CIF file, the following rules should be
observed.

1. Substrate hinges. Use simple substrate hinge as

shown in Figure 2(a).

2. Scissor hinge. Use a typical scissor hinge, with the

addition of a 1-um wide strip of BPMTL layer
running along the hinge axis of the 2 joining
structures as shown in Figure 2(b). The BPMTL
layer strip should be drawn on top of both POLY1
and POLY2 layers.

3. Reflector pseudo layer. Place the BPMTL layer

over MTL layer. The reflective pseudo layer is
defined as the intersection area of BPMTL and
MTL.

Figure 2. (a) Sample substrate hinge. (b) Sample scissor
hinge with 1µm stripe of pseudo layer.

3 CIF2MAT - PREPROCESSOR

Figure 3 further details functionalities and sequence of
operations for the Cif2mat preprocessor. Layers within the
CIF files are subjected to boolean operations [3][4] with
other layers to determine the intersections and unions
between layers. In this step, temporary reflector pseudo
layer and temporary pivot pseudo layers are determined.
The reflector pseduo layer is passed to the Matlab toolkit to
use for raytracing. The pivot pseudo layers, for both
substrate hinges as well as scissor hinges, are used in the
linkage determining step. Figure 4 illustrates the placement
of the pseudo pivot layers. In a later preprocessor step, the
top pivot pseudo layers are matched up with the bottom
pivot pseudo layers to from linkage between spatially
disjointed objects.

Once layer boolean operations are completed, all layers,
real and pseudo, are processed by adding the process
dependent topology information. The side view in Figure 4

also illustrates the inclusion of height and thickness
information for a substrate hinge. Once the layers in the
design have been transformed from the flat, 2D CIF layers
into the corresponding 3D, box-like representation, all
spatially jointed boxes are sorted into corresponding
structures. The spatial sorting is accomplished by
performing exhaustive intersection tests of all boxes in the
design. Intersection tests against the bounding box of each
structure are performed to increase efficiency of the spatial
sort.

If the interconnects between structures, i.e. hinges, are
drawn in the specified fashion, the preprocessor can detect
the interconnection between structures by matching the top
pivot pseudo layers and the bottom pseudo layers. Thus,
although all structures are spatially disjointed, linkage
information, connected via hinges, between structures, as
well as rotational data can be gathered. The topologized
design, together with information such as, spatially
disjointed structures, linkage between structures, rotational
information, etc., is written to an intermediate text data file
to be read by the Mat3d toolkit.

Figure 3. Detailed flow of the Cif2mat preprocessor.

Figure 4. Top and side views of a substrate hinge showing
temporary pseudo pivot layer applied. In the side view, top

and bottom pseudo layers are shown.

Intermediate M3D
format output

Boolean Operations

CIF File

Applying Topology

Block Separation

Form Linkage

Intermediate M3D
format output

(a) (b)

4 MAT3D

The boxes in the intermediate data file are read into
Matlab by specifying the vertices of Matlab graph object
called “patch” as shown in Figure 5. It is Matlab’s
underlying plotting functions that render all the patches as
3D plot. Manipulation and movement of structures, such as
rotation and translation, are done by applying the spatial
delta to the vertices of all the patches involved. After each
movement, Matlab’s plotting engine updates the plot
accordingly. By entering commands in the Matlab console
window, or submitting an m-script file, a series of
movements can be done such that the design appears to
undergo animation. A set of commands exist to do the
following tasks:

• Identify, manipulate and view structures.
• Get, set linkage and rotational information (if not

already extracted by the preprocessor).
• Specify and commence raytracing parameters.
• Commence collision detection.

4.1

for
mo
det
con
Ma

In this Matlab implementation, collision between 2 box-
shaped objects is determined by 6x6 facet intersection tests.
Since each structure is usually composed of multiple boxes,
bounding box tests and proximity tests are performed to
increase the efficiency of collision detection tests between 2
structures.

4.2 Raytracing

With the reflector pseudo layer included in the layout, it
is feasible to perform raytracing with Mat3d. The existence
of the incident point of the ray on the reflecting surface can
be determined by computing the dot product of the ray
vector and the normal vector of the plane [7]. If an incident
point exists on reflecting plane, the direction vector of the
reflecting ray can be determined by simple vector algebra.

5 LIMITATIONS

There are several limitations in using this package. The
current version of the Cif2mat preprocessor only handles
Box geometry in the CIF file. Manhattanized and flattened
layout is required for the preprocessor. Also, Torsional
hinge is not recognized by the preprocessor.

6 SAMPLE PLOTS

Figure 6 shows a hollow triangular beam linkage in 2D
design and the linkage and rotational information
automatically extracted for assembly. Figures 7 and Figure
8 show a series of plots and a SEM of a XYZ micro-optical
stage [8], from its 2D design, to the assembled device with
raytracing to illustrate its functionality. Within Figure 10
are plots of a micro mirror [9] and raytracing to
demonstrate its operation. A SEM of the micro mirror is

Read vertices into
patches

Draw Matlab
 3D graphic

Update patch
vertices

p

M3D input file

User Input:
translation
User Input:
translation

Figure 5. Detai

 Collision Dete

There are several col
 general use [5][6].
re efficient to impl
ection algorithm since
stant conversions of
tlab’s memory space.

U

Collisio
Detecti
Algorith

rotation

User Input:
erspective

zoom

rotation
Intermediate
led flow of Mat3d toolkit.

ction

lision detection packages available
However, in this application, it is
ement a native Matlab collision
 using the other packages requires
 the patch vertices to and from

included as Figure 11 for comparison.

Figure 6. Plots of 2D design (top) in xy-view, and the
assembled linkages (bottom) in xz-view.

pdate Matlab
3D graphic

n
on
m

Raytracing
Algorithm

Figure 7. Plot of the flat, 2D design of the XYZ-stage.

Figure 8. Plot of the assembled XYZ-stage with raytracing

demonstrating its functionality.

Figure 9. 2D design and 3D plot of an assembled micro
mirror (top). Raytracing to illustrate operation (bottom)

Figure 10. SEM of the XYZ-stage.

Figure 11. SEM of an assembled micro mirror.

7 DOWNLOAD

The authors invite the readers to visit the Mat3d
website, http://www.ee.ucla.edu/pub/mat3d, where more
information and plots of Mat3d, its on-line documentation,
as well as the entire package itself can be obtained.

REFERENCES

[1] N. Lo and K.S.J. Pister, "3DµV - A MEMS 3-D
Visualization Package", Proceedings of SPIE, 1995.

[2] Matlab User’s Manual, The Mathworks Inc., 3
Apple Hill Drive, Natick, MA 01760.

[3] B.R. Vatti, "A Generic Solution to Polygon
Clipping", Communications of the ACM, July 1992, pp.56-
63.

[4] B. Zalik, M. Gombosi and D. Podgorelec. “A Quick
Intersection Algorithm for Arbitrary Polygons”, SCCG98
Conf. on Comput. Graphics and it's Applicat., 1998,
pp.195-204.

[5] Brian Mirtich, “Impulse-based Dynamic Simulation
of Rigid Body Systems,” Ph.D. thesis, University of
California, Berkeley, 1996.

[6] Alan Paeth, “Graphics Gems V”, Academic Press,
1995.

[7] Joseph O’Rourke, “Computational Geometry in C”,
2nd Edition, Cambridge University Press, 1998.

[8] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu
"Surface-Micromachined Micro-XYZ Stages for Free-
Space Micro-Optical Bench", IEEE Photonics Technology
Letter, Vol. 9, No. 3, March, 1997.

[9] Matt Last, K.S.J. Pister, "2-DOF Actuated
Micromirror Design for Large DC Deflection", Proc. of
MOEMS '99.

