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Consider the simple electrostatic actuator represented below. The actuator
consists of a thin support beam of length l and width w and two actuator plates
of length L and width sufficient to make them appear rigid. The gap between
the actuator plates is initially α0; as voltage is applied, the beam is pulled down
by a small amount y and tilted to some small slope θ. The whole assembly is
fabricated in a layer of thickness t.
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If fringing fields are neglected, the electrostatic attraction between plates in
a parallel plate capacitor is given by

F =
1

2
ε0AV 2g−2

where A is the area of the two plates, V is the applied voltage, g is the distance
across the gap, and ε0 is the permittivity of free space (a different constant
would be used in a different medium).

When the plates are at a small tilt, a reasonable approximation of the attrac-
tion is given by breaking the plates into little differential elements and treating
each element as though it consisted of parallel plates. (In fact, derivation of
the potential using this approximation is given in chapter 30 of Halliday and
Resnick’s general physics text. A similar approximation was used by Hornbeck
in analyzing the design of the DMD micromirror; see Senturia’s book.)

Using this approximation, we get a distributed load F (x)dx along the length
L of the beam:

F (x) dx =
1

2
ε0tV

2g(x)−2
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If g is a constant function, integrating this formula from 0 to L gives the formula
for parallel plate attraction from the last paragraph.

For convenience, assume that the two plates are rigid, so that g(x) = α+θx.
We will denote the constant term in the electrostatic attraction by

Ke =
1

2
ε0tV

2

Then the total force on the top plate is given by

F = −Ke

∫ L

0

(α + θx)−2 dx

We can nondimensionalize the integrand by the change of variables x̂ = x/L to
get

F = −KeL
−1

∫

1

0

(α/L + θx̂)−2 dx̂

= −KeL
−1F̂

Similarly, we can write the moment experienced at the left end of the top plate
as

M = −Ke

∫

1

0

x̂(α/L + θx̂)−2 dx̂

= −KeL
−1M̂

Now consider what happens when the top plate is supported by a single rigid
beam (see figure). Based on the small-deflection elastic beam equation

EIy′′ = M(x)

the deflection and slope of the right end of the support beam under a point force
F and moment M should be

y′ = θ =
Ml

EI
+

F l2

2EI

y =
Ml2

2EI
+

F l3

3EI

Plugging in the expressions derived above for F and M and doing some algebra
gives us

θ =
Kel

EI

(

M̂ +
1

2
F̂

l

L

)

y =
Kel

2

EI

(

1

2
M̂ +

1

3
F̂

l

L

)
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The first equation is completely non-dimensionalized; we can non-dimensionalize
the second by defining ŷ = y/l = y/(Ls) where s = l/L. We also define
the non-dimensional constant Kn = −Kel/(EI). Finally, we write the non-
dimensionalized gap distance function

ĝ(x) = α̂0 + sŷ + θx̂

where α̂0 is the (scaled) initial gap before any actuation. The final equations
describing the equilibrium position of the beam, then, are

[

θ
ŷ

]

= Kn

∫

1

0

ĝ(x̂)−2

[

1 1/2
1/2 1/3

] [

x̂
s

]

dx̂

The behavior of our model to a particular applied voltage should depend
only on s and α̂0 (which measure relative dimensions in the device) and Kn.
We can write out Kn as

Kn =
Kel

EI
=

(1/2)ε0tV
2l

Etw3/12
= 6

ε0
E

l

w3
V 2

so the behavior of the model should depend only on

• Kn, which is a simple function of the physical parameters ε0 and E, the
applied voltage, and the length and width of the support beam.

• The ratio of the support beam length to the plate length s

• The ratio of the gap size to the plate length α̂0

This observation provides a possible test for correct implementation of the
analysis routines and of the model. If we take one beam-gap system and scale
the beam lengths and gap size by a factor of 2 and the support beam width by
a factor of 21/3, we should get the same relative deflection and the same pull-in
point. If the behavior is different, there is probably a bug.

It might also be interesting to visualize the implications of the scaling in
this simplified model. Consider, for example, the question of pull-in voltage. It
is obvious from the above equations that the model pull-in value for Kn is a
function of the the ratios α̂0 and s. Because the number of parameters is low,
this function is simple to visualize; it’s just a surface or contour plot. I have not
yet coded this.
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To sanity-check my calculations, I wrote a simple Octave program to solve
for displacement versus voltage in a particular device. The support beam and
plate were both 100 µm long, the support beam width was 2 µm, and the initial
gap was 2 µm. I assumed a Young’s modulus of 165 GPa. The integrals were
computed using an adaptive quadrature subroutine from QUADPACK, and the
nonlinear equations were solved using Octave’s fsolve, which is based on the
MINPACK subroutine hybrd. The voltage increased by one volt per step (when
possible), and used the previous step’s solution as a guess for the solution at
the next step. When fsolve failed to converge, the size of the voltage step was
cut by 0.5 and the procedure repeated.

Shown above is the resulting plot of displacement of the beam ends with
respect to voltage. The procedure stopped when the step size was reduced to
2−10, which occurred at roughly 15.63 V. This is a substantially higher “nu-
merical pull-in” than was experienced with the pull-in function in SUGAR 1.1;
it is not clear whether the difference is due to incorrect implementation in the
current experiment, incorrect implementation in the SUGAR 1.1 code, or some
combination. However, the general behavior (deflection to roughly 1/3 the ini-
tial gap, followed by pull-in) mimics our intuition from the spring-gap parallel
plate model.
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