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Abstract— Squeeze film damping is a major source of 

noise in MEMS structures. Since damping limits the 
sensing accuracy of a given MEMS structure, a model 
relating design parameters to the damping coefficient is 
critical so that the system may be optimized. Several 
successful squeeze-film damping models exist [1-3]. While 
certain models are able to accommodate complicated edge 
effects [2] and perforations [3], to the best of our 
knowledge, none have addressed substrate proximity 
effects. This paper introduces a simplified squeeze-film 
macro-model for a lateral parallel-plate sensing structure 
(Fig. 1) that takes into account substrate proximity effects. 
Second order considerations such as edge effects, 
compressibility effects, Couette flow damping (between the 
substrate and the laterally moving mass), and non-zero slip 
conditions are not included here as they have been 
successfully addressed elsewhere [1-4]. Substrate 
proximity effects are approximated by modeling the gap 
separating the mass and substrate as a channel. Despite its 
many simplifications, our model delivers sufficient 
accuracy for hand-analysis as needed during initial design 
steps. Our results were validated against simulations 
obtained via the CoventorWare MemDamping module. 
 

Index Terms—Damping model, Squeeze film, Viscous 
Damping.  
 

I. INTRODUCTION 

amping is a critical consideration in the design of 
many planar MEMS devices such as accelerometers 

and gyroscopes. While Couette-type damping models 
typically take into account the interaction between a 
substrate layer and a moving mass [4], present squeeze-
film damping models do not. The main motivation of 
this research stemmed from the fact that squeeze-film 
damping is affected by the substrate in many common 
situations. As illustrated in Fig. 1, the substrate tends to 
constrict the air being squeezed out of the gap. If the gap 
in question is located sufficiently close to the substrate, 
the pressure gradient between the two plates is directly 
affected. In modern MEMS processes, the distance 
separating a metal/poly layer and the substrate is 

typically between 1 and 10µm. Hence such effects can 
easily contribute non-negligible damping components. 

Section II of this paper begins with a treatment of 
some of the established theory describing squeeze-film 
damping. This is then used as the foundation for our 
modeling of substrate proximity effects. Several 
secondary modeling considerations (treated elsewhere) 
are discussed to provide the reader with a practical sense 
of what must be assessed in order to achieve accurate 
predictions of squeeze-film damping effects. 

In section III, simulation results are presented and 
compared to hand-analysis models derived in the 
previous section.  

 

II. SQUEEZE-FILM DAMPING 

A. Basic Theory 
In general, Navier-Stokes equations describe viscous, 

pressure, and inertial mechanisms in fluids. Under 
certain flow conditions, these much-complicated Navier-
stokes equations can be simplified into the Reynolds 
equations. Its underlying assumptions are as follows: 1) 
the film is isothermal, 2) inertial effects are negligible, 
3) amplitude motion and pressure changes are small, 4) 
fluid velocity normal to the surface is negligible, and 5) 
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Fig. 1. Typical lateral parallel-plate sensing structure. 
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the gap is small compared to lateral dimensions (ho << 
L, W).  
 
The isothermal Reynolds equation is: 
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with P=∆p/Po and σ =12µL2/(Poho

2), and where P is the 
normalized pressure, ∆p is the small variation in 
pressure, Po is the ambient pressure, H is the normalized 
gap thickness h/ho, µ is the fluid viscosity, and L is the 
length of the moving mass. 
 

B. Secondary Considerations 
1) Continuum Limits 

Both Navier-Stokes and Reynolds are derived under 
the assumption that the fluid medium is continuous, 
implying that energy transfer is only achieved 
through molecular interaction within the fluid. This 
condition is only satisfied when the ratio of the fluid 
particle mean free path to the characteristic 
dimension of the system is less than one tenth or so. 
Violation of this condition leads to non-zero slip-
conditions (momentum is transferred as fluid 
molecules collide with the oscillating plates), which 
in turn results in a higher fluid flow rate and a 
reduced damping coefficient. This effect can be 
modeled by an effective viscosity given in [8]: 
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2) Edge-effects 

Finite element simulations have been used to take 
effects due to finite size, edges, and perforations [2, 
3]. As pointed out in [2], the use of trivial boundary 
conditions where the gauge pressure is set to zero at 
edges leads to large errors, especially as plate 
dimensions decrease (see Fig. 5 in [2]). This 
deficiency steams from the fact that the gauge 
pressure become zero only at a certain distance away 
from any edge. The authors in [2] demonstrated that 
applying trivial boundary conditions to a control 
volume that extends beyond the plate edges yields 
accurate (simulation) results. 
 

3) Compressibility and squeeze number 
In squeeze-film analysis, it is common to introduce a 
non-dimensional squeeze number defined [1,3,5] as: 
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where ω is the oscillation frequency. For squeeze 
numbers less than 0.2 [1], the gas behaves as if it 
were incompressible. Otherwise, the film stiffness 
increases as the squeeze number increases and the 
damping coefficient falls approximately as 1/σ 0.4 [5]. 

 

C. Substrate Proximity Effects 
For the sake of clarity/simplicity, let us consider the 
case where Reynolds equations apply. Furthermore, 
let us limit our analysis to geometries for which a  
1-dimensional flow dominates (L>>W). This is only 
a modest restriction since this condition is satisfied 
for many structures such as ADI’s ADXL50 [6]. In 
addition, low excitation frequencies are assumed so 
that the term ∂P/∂t in (1) can be set to zero. Hence 
equation (1) is linearized as follows: 
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where P(x) is the pressure departure from the 
nominal ambient pressure Po, as a function of x. The 
above differential equation is the basis of our 
analysis and is applied to regions 1 and 2 of Fig. 2.  
Note that for region 2, the right hand-side vanishes 
since the term ∂h/∂t is effectively zero. First, we 
solve for the damping coefficient without 
considering the presence of the substrate (i.e. go ! 
∞).  
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Fig. 2. Squeeze-film damping setup. 
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Integrating twice and applying boundary conditions, 
we get the following pressure profile: 
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Integrating P(x) over the plate area A1=LW (which 
yields the damping force) and dividing by ∂h/∂t, we 
get the damping coefficient:  
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Next let us bring the substrate into the picture. Since 
the presence of the substrate restricts the air flow 
out of the bottom side of the actuator gap, it has a 
direct impact on the pressure profile within the gap. 
For simplicity, the volume of space between the 
bottom of the plates and the substrate (region 2 in 
Fig. 2) is approximated as a channel of cross-section 
area A2 = goL and length do= d+ho/4, extending in the 
x-direction (the change in direction of the flow is 
neglected).  
Integrating (5) twice, we obtain: 
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where P1(x) and P2(x) are the pressure profiles in 
regions 1 and 2, respectively. C1, C0, D1, and D0 are 
integration constants to be determined by applying 
appropriate boundary conditions. In the case where 
the substrate is absent, the pressure gradient is zero 
at the center of the plates (x=W/2) and an ideal 
boundary can be assumed (no edge effects) where 
the gas pressure settles to ambient at the edges of 
the plates (P1(0)=P1(W)=0). However in our case, 
most of the aforementioned boundary conditions no 
longer hold. While P1(0)=0 still holds, new 
boundary conditions must be established at the 
interface of regions 1 and 2. The following 
boundary conditions are determined: 
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Substituting back into equation (7a), we get: 
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Again we obtain the damping coefficient by 
integrating the above over the plate area and then 
dividing by ∂h/∂t: 
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From equation (10) above we make the following 
observations. First, letting go! ∞, equation (10) 
reduces to equation (5) where the substrate was 
considered infinitely far away. Next, we note that as 
the closer the substrate is to the moving plates (go 
decreases) the higher the damping coefficient. This 
makes sense since increasingly restricting the flow 
from underneath the moving plates clearly raises the 
pressure within the gap. Finally, letting go ! 0, (10) 
yields a damping coefficient exactly 4 times greater 
than for the case where the substrate is absent (see 
equation (5)). These results are verified via 
simulations in the following section. Equation (10) 
is plotted in Fig. 3 as a function of go for various 
dimensions. 
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Fig.3. Plot of equation (10) as a function of go. 
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III. SIMULATION RESULTS 

In an attempt to verify our model derived above, we 
simulated a typical structure as shown in Fig. 1. Our 
simulation tool is a damping module from the MEMS 
CAD package CoventorWare (formerly MEMCAD). 
Finding an adequate simulator for this type of problem 
is a non-trivial task. The CoventorWare package was 
chosen since it was the only know tool having an actual 
squeeze-film damping simulation engine. However, it 
was discovered too far along the way that this tool 
cannot take neighboring structures (e.g. a substrate plane 
nearby) into account for such simulations. Despite this 
serious limitation, extreme cases where the substrate is 
moved infinitely close or infinitely far away were 
successfully verified (since these special cases can be 
modeled by applying appropriate boundary conditions). 
Fig. 4 displays hand calculations based on equation (10), 
superimposed by simulation results. Fig. 5 shows the 
percent error between equation (10) and finite-element 
simulations, as a function of the plate’s lateral 
dimension (L). As expected, (10) is no longer valid for 
lengths on the order of the plate’s vertical dimension 
(W). This is because (10) assumes a very long and 
narrow strip (L>>W) such that the gas flow can be 
approximated as unidirectional (x-direction in the above 
derivation). 

IV. CONCLUSIONS 

We have investigated substrate proximity effects on 
squeeze-film damping in a generic lateral parallel-plate 
sensing MEMS structure. Our simplified model derived 
in Section II shows excellent agreement with finite-
element simulations for long and narrow structures 
where a 1-D gas flow dominates. The exact same 
approach can be applied to derive a 2-D (x-y) model. 
Hence, despite its many simplifying assumptions, the 
proposed model reasonably predicts squeeze-film 
damping between two plates suspended above a 
substrate layer and is particularly well suited for hand-
analysis during the initial phases of a design. 
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Fig. 4. Hand-calculated and simulated damping coefficients. 

Fig. 5. %Error between hand-calculated and simulated 
damping coefficients. 
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