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1 Abstract 
Several solutions have been proposed to the pull-in problem 
inherent in MEMS electrostatic gap closing actuators 
including mechanical methods using nonlinear springs. This 
paper extends the study of using nonlinear springs for 
increasing a gap closer’s maximum stable deflection via 
spring designs with motion in the substrate plane. Two 
nonlinear spring designs were studied, both with multiple 
discrete spring constants: a partitioned beam and a spring of 
decreasing coil length under compression. The expected 
maximum stable deflections and pull-in voltages were 
calculated for each design. Analyses of these designs suggest 
that it is difficult to deflect beyond 70% of the gap using these 
methods, and that a fourth power design is optimal, yielding a 
minimum pull-in voltage and achieving nearly 70% gap 
deflection. 

2 Introduction 
Traditional MEMS electrostatic gap closing actuators have 
stable deflections limited to 1/3 of the initial gap. This 
problem, known as pull in, occurs because the nonlinear 
electrostatic force is coupled with a linear restoring spring. 
This behavior is acceptable for binary actuators such as those 
found in inchworm motors, but undesirable for analog 
positioning applications.  
 
To increase the maximum stable deflection, this study focuses 
on counteracting the nonlinear electrostatic force with a 
nonlinear spring. Two nonlinear spring designs were analyzed. 
The first is a partitioned beam which encounters rigid “stops” 
as it deflects. When the beam encounters a stop, its effective 
length drops and the spring constant increases. The second is a 
spring with a decreasing coil length profile. When the spring 
compresses enough to close a coil the effective spring constant 
increases. Both designs exhibit a discretely increasing spring 
constant.  

2.1 Previous Work 
Previous work addressing pull-in instability has taken both 
electrical and mechanical approaches. Seeger and Crary [2] 
demonstrate that by employing a capacitor in series with a gap 
closer, the deflection range is increased at the expense of 
increased voltage. Chu and Pister [3] show that closed–loop 
feedback control of the actuator can increase maximum stable 
deflection. Hung and Senturia [4], [5] present a technique 
where the electrostatic force is applied only to a certain 
portion of a beam. This design uses lever action to achieve full 
gap deflection while keeping the electrostatic gap deflection 
within the 1/3 range. Finally, Burns and Bright [1] illustrate 
that multiple flexures and flexures with dual spring constants 
respond with a nonlinear restoring force, thus allowing the 
useable gap distance to be increased. 

2.2 Gap Closers with Nonlinear Springs 

 
Figure 1. Total (electrostatic plus spring) force vs gap closer position 
(both normalized) for an electrostatic gap closing actuator with a linear 
(left) and non-linear r = 4 spring (right). Each curve corresponds to an 
applied voltage. 

 
Figure 1 (left) illustrates the pull-in problem inherent to 
electrostatic gap closing actuators using a linear mechanical 
spring as the restoring force agent. The figure shows the 
system’s total force (sum of electrostatic and spring force) 
versus position with the applied voltage as a parameter, given 
by:  
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F total force   A total gap closer area 
z position   Fs spring force 
V applied voltage  z0  initial gap 
ε0  permittvity of free space 

 
Stable equilibrium points occur where the curve intersects the 
x axis with a negative slope. Pull in occurs when the system is 
marginally stable and has deflected 1/3 of the initial gap.  
 
As previously suggested [1], a nonlinear restoring force may 
be generated by adding an exponent r to the linear force-
displacement relationship resulting in:  
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δ spring deflection  k scaling factor 
 

With this ideal scheme, the percent of the gap with stable 
deflection is given by: 
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Thus, the further r is increased, the closer we can get to 
deflecting the entire gap. Figure 1 (right) shows how the 
maximum deflection is increased to 2/3 of the gap for r = 4. 
The problem now becomes how to implement real springs 
with r > 1. 

3 Design 

3.1 Principles 
The main idea used to implement the nonlinear support 
springs is that of contact points. When a spring encounters a 
contact point, the number of effective springs in series 
decreases and the stiffness increases. This results in a spring 
whose force-displacement curve is piecewise linear and thus 
allows us to approximate equation 2 for particular values of r 
and k. Figure 2 shows how an r = 4 spring is approximated 
with three contact points.  
 

 
Figure 2. Spring force versus deflection for an ideal 4th power nonlinear 
spring and a piecewise approximation to it. The circles denote contact 
points (the last circle may or may not denote a real contact). 

The design procedure for both springs presented in this paper 
begins with a desired piecewise linear force-displacement 
curve. This curve is fed into a Mathcad routine which outputs 
the geometry of the spring necessary to implement the curve. 
Using this technique we developed test structures for r = 2 to 7 
for each design. The designs are to be fabricated using the 
Cronos MUMPs process which offers three polysilicon layers, 
two sacrificial oxide layers, and a top layer of gold all on a 
base layer of silicon nitride; however, the designs only use one 
polysilicon layer. Having a small minimum line width 
(MUMPs offers 2 µm) is critical for the designs to fit in a 
reasonable area and keep applied voltages to a minimum (all 
designs to be fabricated were constrained to fit within a square 
millimeter and pull in at less than 200 V). 

3.2 Design 1: Partitioned Beam 
The first design is a cantilever beam which makes contact with 
two fixed points (figure 3). The beam is modeled with a fixed 
support on one end and a sliding support on the other. The gap 
closer applies a force to the sliding end of the beam, and when 
it has deflected enough the beam will touch the first contact 
point at which the spring constant is increased from 
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Figure 3. Schematic of a partitioned beam. When the gap closer deflects 
the beam enough to touch a contact point, the beam stiffness is increased. 
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k spring constant  I cross-sectional inertia 
E Young’s modulus  L beam length 

 
where x is the distance of the contact point along the beam. 
The stiffness is increased again when the second contact is 
met. Figure 4 shows modeled deflection profiles of an r = 4 
beam with a 9 µm gap when each contact is met and at pull in. 
 

 
Figure 4. Partitioned beam deflection profiles when the beam hits the first 
contact point, second contact point, and after pull in. 
 
The geometrical parameters for this design are the length of 
the beam, the x and y locations of the contact points, and the 
initial gap. Two of these parameters were held constant for the 
six test structures: the beam length was fixed at 400 µm, and 
since the minimum space is 2 µm, the y location of the first 
contact was held at 2 µm. The x locations of the contact points 
move toward the end of the beam with increasing r. The 
resulting layout for r = 4 is shown in figure 5. Two partitioned 
beams in parallel were used so that the gap closer electrodes 
remain parallel. Thin beams couple the moving electrode to 
the partitioned beams so that strain stiffening (axial loading) is 
avoided. 
 



 
Figure 5. Layout of partitioned beam (4 th power). The electrostatic gap is 
indicated as well as the first and second contact points on the left (similar 
contact points are also on the right). White regions indicate substrate 
contacts. 

3.3 Design 2: Coil Profile 
Modeled after standard conical springs, this spring design uses 
three beams of different length connected in series (figure 6).  
 

 
Figure 6. Spring of decreasing coil length 

 
This combination operates as a nonlinear spring when a 
compressive force is applied to the system. Enough force will 
cause the longest (least stiff) beam to close against the fixed 
support. Once this happens, the number of springs in series 
decreases and the system’s spring constant increases. There 
are three possible closures in this design, yielding three 
different spring constants. Closures two and three occur 
against the spring itself. 
 
Analysis of this design involved determining the lengths of the 
three beams (coils) to match the desired nonlinear force-
deflection curve. Each beam was treated as an individual 
component. Equation 6 below relates the beam’s deflection to 
the applied force F and associated moment M and was used to 
determine each beam’s relative deflection: 
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The calculated deflections of each beam were combined to 
yield the total defection of the system. It was then possible to 
determine the individual beam lengths using the tip defection 
and associated force at each closure. It was assumed that no 
moment is applied at the spring tip (there are, however, 
moments acting on the other two members of the system). It 
was also assumed that the connections between the beams 
maintain their initial orientation (this was confirmed for the 
first closure using SUGAR). Deflection due to the spring 
contacting itself was ignored. 
 
The calculations show that the beam lengths increase with 
increasing r. The long beams range from 150 µm to 410 µm, 
middle beams from 80 µm to 300 µm, and the shortest beams 
from 40 µm to 170 µm. 
 
With known beam lengths and required operating voltages, it 
was possible to design multiple test structures. Each test 
structure consists of a single gap closing actuator attached to 

two springs in parallel to ensure that the gap closer’s 
electrodes remain parallel. As shown in figure 7, each spring 
is attached to a fixed boundary on one end and to a frame on 
the other, which displaces as a result of the electrostatic force. 
The gap closer’s fixed electrode resides within the movable 
frame. 

 
Figure 7. Layout of decreasing coil length spring with r=5. 

 
The multiple test structures correspond to the different force-
deflection curves for which the exponent r is varied. 
Additional test structures attempt to increase the overall 
deflection by increasing the spacing between the beam 
members of the spring. The area of the gap closer remains 
constant throughout and was determined such that voltage 
requirements are reasonable. The dimensions of the frame also 
remain constant. The frame height was chosen to minimize 
electrostatic effects between the fixed electrode and the 
bottom of the frame. The distance between the fixed electrode 
and the bottom of the frame is therefore greater than ten times 
the initial gap length. 

4 Expected Results 
In achieving our goal of increasing maximum stable deflection 
of electrostatic gap closing actuators via a piecewise linear 
spring, several phenomena can be predicted by figure 8. 
Figure 8 (left) shows the amount of deflection we expect to get 
as a function of applied voltage for the r = 4 partitioned beam 
and compares it to a linear spring and an ideal nonlinear spring 
with the same pull-in voltage. Pull in occurs when the slope is 
infinity. We see that the piecewise linear effect results in a 
significantly increased pull-in voltage over what is expected 
for the ideal nonlinear spring. 
 
Figure 8 (right) shows the expected force versus position 
behavior. Each curve corresponds to the voltage necessary for 
closure. For the first and second contacts, we see that the slope 
as we approach the equilibrium point from the right is zero, 
meaning that we would have pulled in if the contact were not 
there. Due to process variations in the geometry, we may see 
some intermediate pull ins in the actual devices. 
 
The maximum stable deflection as a percent of initial gap for 
the test structures is shown in figure 9 which compares with  
ideal nonlinear springs. We expect the same percentage for 
both spring designs. We see that for r < 4, the deflection is 
greater than the ideal case, and for r > 4 it is less. Furthermore, 
we see that we don’t gain much by going over  r = 4 where the 
curve levels out and we never get past 70% of the gap. 
 



 
Figure 8. Spring deflection vs applied voltage (left) and total force versus 
gap closer position (right) for an r = 4 partitioned beam. The left plot 
compares with a linear spring and the ideal 4th power spring from which 
it was derived. 
 

 
Figure 9. Expected percent maximum deflection (δδmax

 / z0) as a function of 
test structure for both the partitioned beam and coil profile designs. The 
data is compared with the behavior of ideal nonlinear springs. 
 

Figure 10 shows the expected required voltages for first 
contact, second contact, and pull in for all test structures: the 
partitioned beam design on the left and the coil profile design 
on the right. Both designs exhibit a decreasing voltage 
requirement to make the first contact with increasing 
exponent. Also, both curves predict a minimum in the pull-in 
voltage at r = 4. The pull-in voltage for the partitioned beam 
blows up for high exponents since the final effective beam 
length becomes quite short. 
 

 
Figure 10. The voltage required to make the first contact, second contact, 
and pull in as a function of the test structure for the partitioned beam 
design (left) and the coil profile design (right). 

5 Conclusion 
Two nonlinear springs designs were devised to counteract the 
nonlinear electrostatic force in electrostatic gap closing 
actuators and increase the maximum stable deflection beyond 
1/3 of the initial gap.  The first design, the partitioned beam, 
varies the effective length of a beam as it deflects to increase 
its stiffness.  The second design uses a coil profile to decrease 
the number of springs in series as the actuator deflects. For 
each design, six test structures were laid out, each 
corresponding to the spring exponent r = 2 to 7. Calculations 
show that we will not see maximum stable deflections beyond 
70% of the initial gap, and the pull-in voltages are minimum 
for the r = 4 designs. The disadvantage to the designs is their 
large voltage and area requirement, although they may be 
useful for some analog positioning applications, perhaps in 
conjunction with electrical or servo control methods to 
increase stable deflection further.  
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