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Three dimensional plate element with four nodes was introduced to SUGAR library. The 
element is based on Bogner-Fox method for generating inter-element compatible stiffness 
and mass matrix by the use of interpolation formulas. The element was verified for Static, 
Modal analysis, the damping matrix has been developed but not verified. 
 

Introduction: 
 Plates are vastly used in MEMS structures as 
resonating elements, proof masses, and flexures.   
Plates can be considered as an array of parallel 
beams fused together, and their interaction 
opposes dimensional changes, resulting in 
greater resistance to bending. The Poisson ratio 
is important for plates as the lateral strain serves 
to stiffen them, Thus plates will have less 
curvature than a beam under equilibrium load, 
approximately (1-�2) as much as plate bending, 
which can constitute a difference in results 
while modeling systems in SUGAR since plates 
are modeled using a two nodes beam element. 
Bogner-Fox plate model uses the concept of 
minimum potential energy in the analysis of 
plates and shells with a finite number of degrees 
of freedom, the model insures completely 
compatible displacement states and geometrical 
admissibility between the elements. 
Plate theory: 
The major assumptions made in the derivation 
of this plate element is [2]: 

��Normals to the middle surface of the plate  
          remain normal through the deformation.        

��Transverse shear deformation is neglected. 
��The normal displacement is a function  
   only of the middle surface coordinates. 

The above assumptions permit displacement of 
the order of several times the thickness, but 
restrict the class of the two dimensional 
structures to thin plates. 
The strain energy for this plate element can be 
decoupled into membrane and bending, which 
are represented by the following equations: 
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u, v, and w are the displacements in the 
x, y and z directions, These displacement 
modes can be described by the 
following: 
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v(x,y)  will have  a similar equation. 
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Static Analysis: 
The membrane and bending stiffness matrices 
are obtained by constructing the total bending 
and potential energy for the element and taking 
the partial derivatives with respect to the 
independent degrees of freedom and setting 
these equal to zero. In the case of the membrane 
stiffness matrix, the independent degrees of 
freedom are ii vu , , while in the case of the 
bending stiffness matrix, the independent 
degrees of freedom are 

xyyx wandwww ,, which are the lateral 
displacement, rotation around the y-axis, 
rotation around the x-axis, and the twist 
rotation. 
The displacement vector of the plate at each 
node is given as 
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The minimum potential method produces a 24 
by 24 stiffness matrix, a MATLAB file was 
written to generate the matrix using 
Matlab/symbolic, which is provided in the 
appendix. 
For more accurate element a higher order 
interpolation functions can be used in the 
displacement modes to generate the stiffness 
matrix. 
The structure used to demonstrate the static 
solution is a clamped plate subject to a uniform 
load of 0.2 Psi for several ratios of length to 
width. The results analytical solution obtained 
from [*] in the table.1. The analytical solution 
for the displacement at the center of a 
20x20x0.1 in3 plate that has E=10.92Psi and 
v=0.3 is 0.402in, the plate element shows less 
error by using more elements-(shown in 
table.2). 

 
 
 

 
 
Fig.1: comparison of analytical and SUGAR 
results for various width /length ratios. 

 
elements Analytical  Error% 
     4   0.04329   5.4 
     16   0.0417   3.7 
     36    0.403   0.7 

 
Modal analysis 
The energy associated with the transverse 
displacement can be evaluated in the absence of 
external forces using D�Alembert formulae: 
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Where m� is the mass density of the plate 
material. When the assumed modes are substituted 
into the potential energy and the stationary 
conditions taken, the mass matrix is obtained as: 

WMWQ bb
2
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Where bM is the consistent mass matrix for the 
element.  
The stiffness and the consistent mass matrices are 
given in [2]. 
The plate element results were verified using a 
plate with one clamped edge and all the other 
edges are free. The structure was modeled with 16 
plate elements.The plate dimensions are 
10x10x0.01, with a density of 1 and 10.92 E6Psi 
elastic modulus [3]. 



 
Frequency Analytical  Sugar 
    1�    0.3471  0.3475 
    2�    0.8508  0.8517 
    3�     2.128  2.1325 

    4�     2.719   2.725 
    5�     3.095   3.104 

    6�     5.418   5.446 
 

Table.3: comparison of analytical and SUGAR 
results for  the six first modes. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.2 Mode 3 of a modal analysis of parallel plate 
accelerometer rotator using the plate and beam 
elements, the figure displays the plate using the 
display functions developed for plates. 
 
Transient analysis: 
 The system of equations governing the transient 
analysis is of the form: 
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Where  
      �K   Stiffness matrix. 
      �C   Damping matrix 
      �M  Mass matrix 
Viscous air damping is the dominant dissipation 
mechanism for microstructures that operate at 
atmospheric pressure. The damping matrix can be 
decoupled into membrane and bending damping 
matrices. 

 
 
 

 Squeeze film damping from vertical 
motion creates a pressure in the thin film 
of air between the plate and the 
substrate. Isothermal, small pressure-
variation and small displacements 
assumptions applied to the fluid 
governing equation result in the 
expression [5]: 
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Where  
      �P   Squeeze film pressure. 

         ��   Air viscosity 
        �ow  Air gap height 
        �)(wd  Plate displacement. 
The squeeze film-damping coefficient 
for the rectangular plate is  [6]: 
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Where )/( LW� the effect of the plate 
width/length ratio in damping.  

 
Curve fitting was used to obtain the 
function that describes the effect of plate 
dimensions on squeeze film damping 
shown in fig.3 [5] 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Effect of width/Length ratio on 
Damping produced by a rectangular plate. 
 
 
 
 



The potential energy due to damping is given 
by: 
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From the similarity with the consistent matrix 
derivation, the bending damping matrix can be 
presented in: 
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Where bM is the consistent bending mass matrix, 

bD  is the Damping bending matrix. 
 
For deriving the membrane-damping matrix, a 
Coette gas flow damping effect was used as 
in: 
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again the membrane damping matrix will be 
given by: 
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Where mM is the consistent membrane mass 
matrix for the element, mD is the membrane 
Damping matrix. 
Conclusions: 
A four nodded plate element was introduced 
to SUGAR. The element was verified for the 
static and modal analysis. The damping matrix 
was developed for low order damping but not 
verified. A display function was also 
introduced for this plate element. 
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