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INTRODUCTION

Electrostatic actuators have been extensively studied and
have found many applications due to their low power and high
frequency. Their wide use has stimulated the creation of many
simulation packages used to characterize and fine-tune a
design before fabrication. Designing thermal actuators is also
of interest in the MEMS community because unlike
electrostatic actuators, they do not require high voltages to
achieve large deflections. However, the design and simulation
tools available are lacking. Current simulation packages are
typically based on finite element analysis, which can yield
fairly accurate results but are costly and time consuming.
Thermal actuators can also be modeled in SUGAR, “a
simulation tool for MEMS devices based on nodal analysis
techniques from the world of integrated circuit simulation.
Beams, electrostatic gaps, circuit elements, etc. are modeled
by small, coupled systems of differential equations”.1 SUGAR
is more efficient than finite element analysis and can be used
to find a quick approximate solution, which can be very
valuable to a designer.

Much work has been done in modeling and
experimentally characterizing thermal actuators.2-10 The
motivation of this effort is to review the existing material
available in literature and derive some general equations to
describe the behavior, which will also be used for modeling
thermal actuators with different geometries. These general
equations are implemented in SUGAR and tested for a variety
of structures. The fundamental building block is a single beam
characterized with first order thermal properties.

FIRST ORDER ANALYSIS OF A SINGLE
BEAM UNDER HEAT

The representation of a single beam thermal actuator can
be simplified for analysis using a one-dimensional problem to
find the forces generated. For a single beam, when the
temperature is different from the ambient temperature, it
undergoes either expansion or compression. The change of the
beam length can be calculated using:
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where α(T) is the thermal expansion coefficient. If we assume
α(T) is a constant for various temperatures, the equation of
thermal expansion can be simplified as:
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Applying a voltage across the beam induces thermal
expansion when current passes through the beam. The

electrical energy will be converted to thermal energy at a rate
given by:

′ =E I Rthermal
2     (W),

where I (A) is the current and R (Ω) is the electrical resistance
of the beam.

In order to find the change in beam length and the force
generated it is necessary to find the temperature distribution
within the beam, which can be described using the following
equation:
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where J is the current density, ρ is the resistivity of the beam,
and k is the thermal conductivity (W/m-Kelvin). Both
resistivity ρ and thermal conductiivity k change with
temperature. Assuming k is a constant and the resistivity of the
beam changes linearly as the temperature varies, then k is
taken equal to the value when evaluated at room temperature
and
                 [ ]ρ ρ λ= + −0 1 ( )T Ts                                     (4)

where ρ0 is the resistivity at Ts and λ is the linear temperature
coefficient. If we also assume λ(T-Ts) << 1, then the Eqn. (3)
can be written as the following:
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The solution of the above differential equation is

   T x T be ces
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where τ
λρ

= J
k

0 . b and c are constants and can be

determined by boundary conditions.
For the subroutine developed, N beams in series between

two anchors can be simulated. The equations with appropriate
boundary conditions for individual beams are the following:
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A matrix, shown below, is created using these equations,
and the constants are found such that the temperature
distribution is known in each beam.

Once the temperature distribution for each beam is
known, ∆L and an equivalent force generated due to thermal
expansion can be found using the following equation.

F AE
L

L
=

∆

These equations represent a first order approximation for the
beam expansion, temperature distribution, and force generated
for a single beam5-7, which were implemented to create a net
list that can be solved using SUGAR.

SUGAR IMPLEMENTATION

A new subroutine “cho_therm(‘netlist’)” was created,
which reads in a SUGAR net list, calculates the forces
generated due to thermal expansion, and creates a modified
net list with appropriate forces appended. The source code for
the thermal subroutine can be found at:
 http://www-bsac.EECS.Berkeley.EDU/~klscott/.

Inside the subroutine, the geometry of the structure is
determined to find the total resistance and the current density
in each beam. Once the current density is known, the above
mentioned matrix equation is solved to determine the
temperature distribution in each beam, which is then used to
calculate the change in length of the beam due to thermal
expansion and the corresponding force generated. A new net
list is written consisting of the original beams and appended
with the appropriate forces that were generated. For a beam
attached to an anchor, the full force is applied to the non-
anchored end. For a beam attached to two other beams, half
the total force is applied at each node and in the appropriate
directions.

The new net list can then be processed using the standard
SUGAR routines, which will determine the final geometry of
the structure. When SUGAR is executed, it also outputs the
temperature at each node. A basic SUGAR net list and the
modified net list using “cho_therm”, used to characterize the
Guckel thermal actuator, are as follows.

Guckel.net:
% A simple SUGAR netlist
% used to describe a Guckel thermal actuator.

uses mumps.net

Vsrc     *  [a e] [V=5.8971]
eground  *  [e]   []

anchor p1 [a] [l=6u w=6u h=2u]
beam3d p1 [a b] [l=312u w=2u oz=0 h=2u]
beam3d p1 [b c] [l=2u w=5u oz=pi/2 h=2u]
beam3d p1 [c d] [l=250u w=15u oz=-pi h=2u]
beam3d p1 [d e] [l=62.5u w=2u oz=-pi h=2u]
anchor p1 [e]   [l=6u w=6u h=2u]

NewGuckel.net:
uses mumps.net

anchor p1 [a] [l=6u w=6u h=2u]
beam3d p1 [a b] [l=312u w=2u oz=0 h=2u]
f3d * [b] [F=899.6979u oz=0]
beam3d p1 [b c] [l=2u w=5u oz=pi/2 h=2u]
f3d * [c] [F=1329.4324u oz=pi/2]
f3d * [b] [F=-1329.4324u oz=pi/2]
beam3d p1 [c d] [l=250u w=15u oz=-pi h=2u]
f3d * [d] [F=2698.9105u oz=-pi]
f3d * [c] [F=-2698.9105u oz=-pi]
beam3d p1 [d e] [l=62.5u w=2u oz=-pi h=2u]
f3d * [d] [F=-215.2996u oz=-pi]
anchor p1 [e]   [l=6u w=6u h=2u]

Ideally the thermal subroutine should be encapsulated
within a model function and the forces generated should be
added appropriately to the global equation. Due to time
constraints we were more concerned with understanding and
being able to explain our results.

There are a few caveats worth mentioning. The subroutine
is not as robust as the standard I/O routines written for
SUGAR and has the following limitations; there are no
defaults or checks for values that are missing, all units are
defaulted to microns, resistivity and thermal expansion values
are variables rather than input parameters, nodes can be named
only with one letter, beams can only have one angle associated
with them, and the new file is created in a set home directory.

There is also a caveat worth mentioning in regards to
SUGAR, because it can be an issue for correct modeling of
thermal actuators. SUGAR does its calculations based on a
beam model, which is accurate for beams with an aspect ratio
greater than ten. If a beam has an aspect ratio less than ten,
there is code that has been written which utilizes a plate model
as opposed to a beam model. The user should use the
appropriate code for the problem.

RESULTS AND DISCUSSION

Both Chevron and Guckel thermal actuators were
modeled using the subroutine “cho_therm(‘net’)”. A simple
Chevron thermal actuator is shown in Figure 1. Actuators with
various lengths, widths, heights, and pre-angles α have been
simulated at different voltage biases. Table 1 gives the
dimensions of the Chevron thermal actuators used for the
simulations. The simulation results using SUGAR are
compared to other experimental data from Que et al8 and
Sinclair et al9, as shown in Figure 2. The simulated tip
deflections are generally higher than the experimental results.
Most of the simulated results are within a factor of two of the
experimental results. At low voltage in Fig 2(a), the ratio of



simulated results to experimental data can be as high as
approximately four.

Figure 1. Schematic of a chevron bent-beam thermal actuator
(taken from reference 7).

Table 1. The length, width, height, and pre-angle of Chevron
thermal actuators used in simulations and experiments.

Q18 Q28 Q38 Q48 S19 S29 S39

L (µm) 800 800 800 800 200 200 200
W (µm) 13.9 13.9 13.9 13.9 2.0 2.0 2.0
H (µm) 3.7 4.75 4.75 3.37 2.0 2.0 2.0

α (mrad) 200 100 200 200 9.1 22.9 38.0
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Figure 2. Comparison of tip deflection of Chevron thermal
actuators simulated by SUGAR and corresponding experiment
results of (a) Que et al8 and (b) Sinclair et al9.

A simple Guckel thermal actuator is shown in Figure 3.
Actuators with various arm lengths, widths and heights have
been simulated at different voltage biases. Tables 2 gives the
dimensions of the Guckel thermal actuators used for the
simulations. The simulation results using SUGAR are
compared to other experimental data from Huang et al7 and
Kolesarr et al11, as shown in Figure 4. In Fig. 4(a), when
compared to data taken by Kolesar et al, the simulation
overestimates the tip deflection, which is similar to the case of
Chevron thermal actuator. Poor correlation was found at low
bias voltages, the simulated tip deflection could be as high as
ten times of the experimental data. In Fig. 4(b), agreement was
very good for the experimental data taken by Huang, except
some of the simulated results are below a factor of two with
respect to the experimental results.

Figure 3. Schematic of a Guckel thermal actuator (taken from
reference 4).

Table 2. The lengths, widths, and heights of each section of
the Guckel thermal actuators used in simulations and
experiments.

K111 H17 H27 H37

L1 (µm) 312.5 240 240.0 240.0
W1 (µm) 2.0 3.0 4.0 3.0
H1 (µm) 2.0 2.0 2.0 2.0
L2 (µm) 2.0 2.5 2.5 2.5
W2 (µm) 5.0 5.0 5.0 5.0
H2 (µm) 2.0 2.0 2.0 2.0
L3 (µm) 250.0 180.0 180.0 120.0
W3 (µm) 15.0 12.0 12.0 12.0
H3 (µm) 2.0 2.0 2.0 2.0
L4 (µm) 62.5 60.0 60.0 120.0
W4 (µm) 2.0 3.0 4.0 3.0
H4 (µm) 2.0 2.0 2.0 2.0
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Figure 4. Comparison of tip deflection of a Guckel thermal
actuators simulated by SUGAR and corresponding
experimental results of (a) Kolesar et al11 and (b) Huang et al7.

The assumption of λ(T-Ts) << 1 used in order to obtain a
closed form description of temperature distribution within the
beams is only valid when ∆T<<1/λ. The hotest spot of the
beams should be lower than Ts+1/λ = 1027 °C. The highest
temperature for each simulation case, shown in Table 3, is 950
°C. Therefore, the approximation still holds for all the
simulations above.

Table 3. Maximum beam tip temperatures.
Chevron Q18 Q28 Q38 Q48 S19, S29, S39

T (°C) 939 711 782 950 882

Guckel K111 H17 H27 H37

T (°C) 771 502 369 789

In this first order one-dimensional modeling, heat loss
from the beam such as radiation to the atmosphere and
substrate through air is neglected. This could explain the
overestimation of the tip deflection compared to the
experimental data. Additional errors are generated because the
thermal conductivity k and the thermal expansion coefficient
α of the material are not constant as temperature varies.

CONCLUSION

A first order model for thermal actuators has been
implemented in SUGAR. Even though no heat loss effects
were considered, the general trends and behaviors are
predicted fairly well. Parasitic heat loss and the non-linear
effects of the thermal conductivity k and the thermal
expansion coefficient α will need to be accounted for to
increase the accuracy between the model and the experimental
results.
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