User: Guest |  Site Map |  My BSAC Profile
Maysamreza Chamanzar, PostDoc 2016

Electrical and Computer Engineering
Advisor: Prof. Maharbiz

Home Page
Research Interests: Optogenetics, Integrated Photonics, Neuroscience, BioMEMS
Job Interests: Academic, Industry R&D

Maysam is a postdoctoral research associate working with Michel Maharbiz and Tim Blanche on developing next generation high density nano neural interfaces.

Maysam received his Ph.D. in Electrical and Computer Engineering from the Georgia Institute of Technology in 2012. His Ph.D. thesis was on developing novel hybrid plasmonic-photonic on-chip biochemical sensors. Maysam received his M.Sc. in Electrical Engineering majoring in Microsystems from the Georgia Institute of Technology in 2008. He has also received a M.Sc. degree in Electrical Engineering majoring in microwaves and optics from Sharif University in 2005. He received his B.Sc. in Electrical Engineering in 2003 from Tehran Polytechnique (AmirKabirUniversity). Maysam has published more than 25 Journal and conference papers. He is the recipient of the Sigma Xi best thesis award from Georgia Institute of Technology. He has received and has been nominated for a number of awards such as the SPIE research excellence award, GTRIC innovation award, OSA Emil Wolf best paper award, and Edison innovation award.

Maysamís current active research is on the design and implementation of next generation optoelectrical integrated neural interfaces to explore and control the brain activity.

A Modular System for High-Density, Multi-Scale Electrophysiology [BPN699]
Truly large-scale electrophysiology simultaneous recording of thousands of individual neurons in multiple brain areas
remains an elusive goal of neuroscience. The traditional approach of studying single neurons in isolation assumes that the brain
can be understood one component at a time. However, in order to fully understand the function of whole brain circuits, it is
essential to observe the interactions of large numbers of neurons in multiple brain areas simultaneously with high
spatiotemporal resolution. This project will establish a complete system for multi-scale electrophysiology in awake, freely
behaving mice, using state-of-the-art nano neural interfaces comprising of tiny silicon probes integrated with on- chip
optical waveguides and compliant monolithic polymer cables connected to a unique light-weight head-mounted recording
system built around a commercially available application specific integrated circuit (ASIC) that has been custom designed for
electrophysiological recordings, combining signal amplification, filtering, signal multiplexing, and digital sampling on a
single chip. We demonstrate the high-resolution excitation of channelrhodopsin-expressing neurons imaged on a two-photon
microscope by evoking action potentials in different parts of cortex. The entire process, including post-fabrication system
integration, has been designed to leverage existing consumer manufacturing processes, making our probe technology mass-
producible and widely accessible at low cost.


     Last Updated: Tue 2016-Nov-22 13:41:06

back to Researchers


  • Copyright Notification: All papers downloaded from this site are © University of California or the publisher, all rights reserved. Contact the BSAC Webmaster for permission related to copyrighted materials.
  • Links on these pages to commercial sites do not represent endorsements by UC or its affiliates.
  • Privacy Policy
  • Contact Us
  User logged in as: Guest
  User Idle since: June 19, 2018, 4:35 pm